CloudCompare——距离测量【2025最新版】

本文详细介绍了如何使用PCL库进行点云数据的距离测量操作,包括加载点云、启动距离测量功能、选取测量点及查看测量结果。此外,还列举了几个相关代码示例,如计算两点间欧氏距离、点云的最大距离、随机点最远距离以及点到平面的距离等,为点云处理提供实用的参考资料。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

本文由CSDN点云侠原创,原文链接。爬虫和抄袭狗就不要来丢人现眼了,你爬不全也抄不对。博客长期更新,本文最新更新时间为:2025年1月11日。

1.距离测量

1.加载点云——选中添加的点云,可以看到黄色的包围框,则表示操作正确
在这里插入图片描述
2.找到距离测量功能

在这里插入图片描述

3.在点云上选择要测量的点,先选择一个点,出现如下界面,点击"yes"

在这里插入图片描述
4.鼠标左键单击箭头所指按钮
在这里插入图片描述
5.点击另一个点,则可测量两个点之间的距离。
在这里插入图片描述
distance:两点之间的欧氏距离。

2.完整操作

在这里插入图片描述

3.相关代码

[1] PCL 距离计算
[2] PCL 计算点云的最大距离
[3] PCL 随机选取一点并计算距离它最远的点
[4] PCL 计算点到平面的距离

### 计算归一化高程值 在CloudCompare中计算归一化高程值涉及几个关键操作。首先,需要理解什么是归一化高程值。归一化高程是指相对于某个基准面的高度测量值,通常用于去除地形起伏的影响以便更好地分析其他特征。 #### 导入数据集 为了处理点云数据,在CloudCompare环境中加载目标文件。支持多种格式如LAS、LAZ等: ```bash File -> Open or drag-and-drop your point cloud file into CloudCompare. ``` #### 创建参考平面 选择合适的区域作为参考基底,可以通过手动绘制多边形框选特定部分或者利用已有矢量图层自动提取边界轮廓来定义这个水平面。 #### 提取高度信息 一旦有了基础表面,则可以基于此计算各点到该平面上方的距离即原始高程值。这一步骤可通过`Tools->Point Cloud Processing->Compute scalar field...`完成设置距离计算模式为垂直方向上的偏移量[^1]。 #### 归一化过程 接下来执行实际的归一化进程,具体做法是将上述获得的所有绝对高程数值减去最小值再除以其极差(最大值减最小值),从而得到介于0至1之间分布的新属性列代表相对位置关系不变但尺度统一后的结果。 ```cpp // 假设 'elevations' 是一个包含所有点高程值得数组 double minElevation = *std::min_element(elevations.begin(), elevations.end()); double maxElevation = *std::max_element(elevations.begin(), elevations.end()); for(auto& elevation : elevations){ double normalizedValue = (elevation - minElevation)/(maxElevation-minElevation); } ``` #### 应用新字段 最后把经过转换之后的数据保存回原有点云对象当中成为新的附加维度供后续可视化或进一步统计分析之用。
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值