一、背景
-
现有基于IoU的损失函数存在不合理的惩罚因子,导致锚框在回归过程中出现面积扩大的问题,使得回归效率降低、收敛速度变慢。
-
同时,这些损失函数在反映锚框与目标框之间的差异、考虑目标框大小以及某些情况下的性能表现等方面存在局限性。
-
在目标检测任务中,边界框回归的损失函数对检测性能至关重要。Powerful-IoU(PIoU)及其升级版PIoU v2正是为解决现有损失函数存在的问题而设计的。
本文利用PIoU
改进YOLOv8
的损失函数,提高模型精度。
专栏目录:YOLOv8改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进