YOLOv8改进策略【损失函数篇】| 替换Powerful-IoU(PIoU),增强对中等质量锚框的关注力,引导锚框更直接、高效地回归

一、背景

  1. 现有基于IoU的损失函数存在不合理的惩罚因子,导致锚框在回归过程中出现面积扩大的问题,使得回归效率降低、收敛速度变慢。

  2. 同时,这些损失函数在反映锚框与目标框之间的差异、考虑目标框大小以及某些情况下的性能表现等方面存在局限性。

  3. 在目标检测任务中,边界框回归的损失函数对检测性能至关重要。Powerful-IoU(PIoU)及其升级版PIoU v2正是为解决现有损失函数存在的问题而设计的。

本文利用PIoU改进YOLOv8的损失函数,提高模型精度。


专栏目录:YOLOv8改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进

专栏地址:YOLOv8改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Limiiiing

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值