
书籍介绍:
本书介绍了点云;它在工业中的应用,以及最常用的数据集。它主要关注三个计算机视觉任务——点云分类、分割和配准——这是任何基于点云的系统的基础。对传统点云处理方法的概述有助于读者快速建立背景知识,而对点云方法的深度学习包括对过去几年的突破的综合分析。然后全面介绍了全新的可解释的点云学习机器学习方法,轻量级且易于训练。提供了定量和定性的绩效评估。对这三种方法进行了比较分析,以帮助读者加深理解。
凭借丰富的 2D 视觉深度学习文献,3D 视觉研究人员的自然倾向是开发用于点云处理的深度学习方法。点云上的深度学习自 2017 年开始流行,该领域的会议论文数量不断增加。与二维图像不同,点云没有特定的顺序,这使得通过深度学习处理点云非常具有挑战性。此外,由于点云的几何性质,传统方法在工业上仍然被广泛使用。因此,本书旨在通过对传统方法和最先进的深度学习方法的全面概述,让读者熟悉该领域。
本书的主要部分侧重于将可解释的机器学习作为一种不同的深度学习方法。与传统方法和深度学习方法相比,可解释的机器学习方法具有一系列优势。这是本书的一大亮点和新颖之处。通过使用我们的方法解决三个研究任务——3D 对象识别、分割和注册——读者将了解如何以不同的方式解决问题,并将这些框架应用于其他 3D 计算机视觉
本书深入探讨点云分析,涵盖传统方法、深度学习和可解释的机器学习技术。主要内容包括点云分类、分割和配准,对比分析了三种方法的优缺点。书中提供丰富的实验和比较,适合3D计算机视觉研究人员和从业者。作者团队包括知名专家,他们在多媒体技术和3D视觉领域有深厚造诣。
订阅专栏 解锁全文
5459

被折叠的 条评论
为什么被折叠?



