模型调参(二):learning rate decay(学习率衰减)【使用库调整学习率:等间隔、多间隔、指数衰减、余弦退火函数、根据指标、自定义】【手动调整学习率】

一、学习率衰减的概念和必要性

解释①:如果在整个梯度下降过程中,保持learning rate不变,如果learning rate设置小了,会导致梯度下降过慢,如果设置大了,对于mini-batch来说最后就很难收敛,一直在最小值附近盘旋。所以动态改变learning rate很重要,在开始的时候,设置较大的learning rate,可以保证梯度下降的速度,慢慢减小,可以使最后的cost function在最小值非常小的范围内盘旋,得到一个比较满意的值。

解释②:学习率过大,在算法优化的前期会加速学习,使得模型更容易接近局部或全局最优解。但是在后期会有较大波动,甚至出现损失函数的值围绕最小值徘徊,波动很大,始终难以达到最优,如下图蓝色曲线所示。所以引入学习率衰减的概念,直白点说,就是在模型训练初期,会使用较大的学习率进行模型优化,随着迭代次数增加,学习率会逐渐进行减小,保证模型在训练后期不会有太大的波动,从而更加接近最优解,如下图中上面一条绿色曲线所示。

在这里插入图片描述
当学习率过大,以J(X)=X^2为例,学习率始终为1,梯度下降算法的运行过程:
在这里插入图片描述
可以看到无论进行多少轮迭代,参数始终在5和-5之间摇摆,而不是收敛到一个极小值。
在这里插入图片描述

二、什么是param_groups

optimizer通过param_group来管理参数组.param_group中保存了参数组及其对应的学习率,动量等等.所以我们可以通过更改param_group[‘lr’]的值来更改对应参数组的学习率。

例1:有两个param_group即,len(optim.param_groups)==2

optim.SGD([
                {'params': model.base.parameters()},
                {'params': model.classifier.parameters(), 'lr': 1e-3}
            ], lr=1e-2, momentum=0.9)

上面第一个例子中,我们分别为 model.base 和 model.classifier 的参数设置了不同的学习率,即此时 optimizer.param_grops 中有两个不同的param_group:

  • param_groups[0]: {‘params’: model.base.parameters()},
  • param_groups[1]: {‘params’: model.classifier.parameters(), ‘lr’: 1e-3}

每一个param_group都是一个字典,它们共同构成了param_groups,所以此时len(optimizer.param_grops)==2,

例2:一个参数组

optim.SGD(model.parameters(), lr=1e-2, momentum=.9)

手动调整学习率,通常可以定义如下函数:

def adjust_learning_rate(optimizer, epoch):
    """Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
    lr = args.lr * (0.1 ** (epoch // 30))
    for param_group in optimizer.param_groups:
        param_group['lr'] = lr

adjust_learning_rate() 函数就是通过for循环遍历取出每一个param_group,然后修改其中的键 ‘lr’ 的值,称之为手动调整学习率。

三、学习率衰减的类型【①使用库;②手动】

学习率衰减的类型有很多种,大致可以分为两类:

  • 一是通过人为经验进行设定,如到达多少轮后,设定具体的学习率为多少;
  • 二是使用库函数进行调整,随着迭代轮数的增加学习率自动发生衰减,这类有比较常用的指数型衰退,具体算法如下图
    在这里插入图片描述
    其中decayed_learning_rate为每一轮优化时使用的学习率,learning_rate为事先设定的初始学习率,decay_rate为衰减系数,decay_steps为衰减速度。

在tensorflow中指数型衰减通过调用tf.train.exponential_decay(learning_rate, global_step, decay_steps, decay_rate, staircase=False, name=None)实现。这里介绍一下decay_steps,若decay_steps=100,即表示100轮迭代后进行一次衰减,staircase=True时,global_step/decay_steps会被转化为整数,这使得学习率呈阶梯型下降(如下图黑色),若staircase=False,下图灰色为连续型衰减学习率。
在这里插入图片描述
在这里插入图片描述

1、使用库函数进行调整

Pytorch学习率调整策略通过 torch.optim.lr_sheduler 接口实现。pytorch提供的学习率调整策略分为三大类,分别是:

  1. 有序调整:等间隔调整(Step),多间隔调整(MultiStep),指数衰减(Exponential),余弦退火(CosineAnnealing);
  2. 自适应调整:依训练状况伺机而变,通过监测某个指标的变化情况(loss、accuracy),当该指标不怎么变化时,就是调整学习率的时机(ReduceLROnPlateau);
  3. 自定义调整:通过自定义关于epoch的lambda函数调整学习率(LambdaLR)。

在每个epoch的训练中,使用 scheduler.step() 语句进行学习率更新,此方法类似于optimizer.step()更新模型参数,即一次epoch对应一次scheduler.step()。但在mini-batch训练中,每个mini-bitch对应一个optimizer.step()。即用法如下:

optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=30, gamma=0.1)

def train(...):
    for i, data in enumerate(train_loader):
        ......
        y_ = model(x)
        loss = criterion(y_,y)
        loss.backward()
        optimizer.step()
        ......
 
for epoch in range(epochs):
    train(...)
    test(...)
    scheduler.step()

1.1 等间隔调整学习率 StepLR

torch.optim.lr_scheduler.StepLR(optimizer, step_size, gamma=0.1, last_epoch=-1)

每训练step_size个epoch,学习率调整为lr=lr*gamma.

以下内容中都将epoch和step对等,因为每个epoch中只进行一次scheduler.step(),实则该step指scheduler.step()中的step, 即step_size指scheduler.step()进行的次数。

参数:

  • optimizer: 神经网络训练中使用的优化器,如optimizer=torch.optim.SGD(…)
  • step_size(int): 学习率下降间隔数,单位是epoch,而不是iteration.
  • gamma(float): 学习率调整倍数,默认为0.1
  • last_epoch(int): 上一个epoch数,这个变量用来指示学习率是否需要调整。当last_epoch符合设定的间隔时,就会对学习率进行调整;当为-1时,学习率设置为初始值。

在这里插入图片描述
等间隔调整学习率:step_size=30, gamma=0.1

1.2 多间隔调整学习率 MultiStepLR

跟(1)类似,但学习率调整的间隔并不是相等的,如epoch=10时调整一次,epoch=30时调整一次,epoch=80时调整一次…

torch.optim.lr_sheduler.MultiStepLR(optimizer, milestones, gamma=0.1, last_epoch=-1)

参数:

  • milestone(list): 一个列表参数,表示多个学习率需要调整的epoch值,如milestones=[10, 30, 80].
  • optimizer: 神经网络训练中使用的优化器,如optimizer=torch.optim.SGD(…)
  • step_size(int): 学习率下降间隔数,单位是epoch,而不是iteration.
  • gamma(float): 学习率调整倍数,默认为0.1
  • last_epoch(int): 上一个epoch数,这个变量用来指示学习率是否需要调整。当last_epoch符合设定的间隔时,就会对学习率进行调整;当为-1时,学习率设置为初始值。

在这里插入图片描述
多间隔调整学习率:milestones=[10, 30, 80], gamma=0.1

1.3 指数衰减调整学习率 ExponentialLR

学习率呈指数型衰减,每训练一个epoch, l r = l r g a m m a ∗ e p o c h lr=lrgamma*epoch lr=lrgammaepoch,即 l r × g a m m a e p o c h lr×gamma^{epoch} lr×gammaepoch

torch.optim.lr_sheduler.ExponentialLR(optimizer, gamma, last_epoch)

参数:

  • gamma(float):学习率调整倍数的底数,指数为epoch,初始值我lr, 倍数为 g a m m a e p o c h gamma^{epoch} gammaepoch
  • 其它参数同上。

在这里插入图片描述
指数衰减调整学习率:gamma=0.9

1.4 余弦退火函数调整学习率

学习率呈余弦函数型衰减,并以 2 ∗ T m a x 2*T_{max} 2Tmax 为余弦函数周期,epoch=0对应余弦型学习率调整曲线的 x = 0 x=0 x=0 y m a x = l r y_{max}=lr ymax=lr e p o c h = T m a x epoch=T_max epoch=Tmax 对应余弦型学习率调整曲线的 x = π x=\pi x=π y m i n = e t a m i n y_{min}=eta_min ymin=etamin 处,随着 e p o c h > T m a x epoch>T_{max} epoch>Tmax,学习率随epoch增加逐渐上升,整个走势同cos(x)。

torch.optim.lr_sheduler.CosineAnnealingLR(optimizer, T_max, eta_min=0, last_epoch=-1)

参数:

  • T_max(int): 学习率下降到最小值时的epoch数,即当epoch=T_max时,学习率下降到余弦函数最小值,当epoch>T_max时,学习率将增大;
  • eta_min: 学习率调整的最小值,即epoch=T_max时,lr_{min}=eta_min, 默认为0.
  • 其它参数同上。

在这里插入图片描述
学习率余弦衰减:T_max=100

1.5 根据指标调整学习率 ReduceLROnPlateau

当某指标(loss或accuracy)在最近几个epoch中都没有变化(下降或升高超过给定阈值)时,调整学习率。

如当验证集的loss不再下降是,调整学习率;或监察验证集的accuracy不再升高时,调整学习率。

torch.optim.lr_sheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=10,
										  verbose=False, threshold=0.0001, threshold_mode='rel', 
										  cooldown=0, min_lr=0, eps=1e-08)

参数:

  • mode(str): 模式选择,有min和max两种模式,min表示当指标不再降低(如监测loss),max表示当指标不再升高(如监测accuracy)。
  • factor(float): 学习率调整倍数,同前面的gamma,当监测指标达到要求时,lr=lr×factor。
  • patience(int): 忍受该指标多少个epoch不变化,当忍无可忍时,调整学习率。
  • verbose(bool): 是否打印学习率信息,print( ‘Epoch {:5d} reducing learning rate of group {} to {:.4e}.’.format(epoch, i, new_lr), 默认为False, 即不打印该信息。
  • threshold_mode (str): 选择判断指标是否达最优的模式,有两种模式:rel 和 abs.
    当threshold_mode == rel, 并且 mode == max时,dynamic_threshold = best * (1 + threshold);
    当threshold_mode == rel, 并且 mode == min时,dynamic_threshold = best * (1 - threshold);
    当threshold_mode == abs, 并且 mode == max时,dynamic_threshold = best + threshold;
    当threshold_mode == abs, 并且 mode == min时,dynamic_threshold = best - threshold;
  • threshold(float): 配合threshold_mode使用。
  • cooldown(int): “冷却时间”,当调整学习率之后,让学习率调整策略冷静一下,让模型在训练一段时间,再重启监测模式。
  • min_lr(float or list): 学习率下限,可为float,或者list,当有多个参数组时,可用list进行设置。
  • eps(float): 学习率衰减的最小值,当学习率的变化值小于eps时,则不调整学习率。
optimizer = torch.optim.SGD(model.parameters(), args.lr,
 momentum=args.momentum, weight_decay=args.weight_decay)

scheduler = ReducelROnPlateau(optimizer,'min')
for epoch in range( args.start epoch, args.epochs ):
    train(train_loader , model, criterion, optimizer, epoch )
    result_avg, loss_val = validate(val_loader, model, criterion, epoch)
    # Note that step should be called after validate()
    scheduler.step(loss_val )

1.6 自定义调整学习率 LambdaLR

为不同参数组设定不同学习率调整策略。调整规则为:
lr = base_lr * lambda(self.last_epoch)
在fine-tune中特别有用,我们不仅可以为不同层设置不同的学习率,还可以为不同层设置不同的学习率调整策略。

torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda, last_epoch=-1)

参数:

  • lr_lambda(function or list): 自定义计算学习率调整倍数的函数,通常时epoch的函数,当有多个参数组时,设为list.
  • 其它参数同上。

例:

import torch.optim as optim

ignored_params = list(map(id, net.fc3.parameters()))
base_params = filter(lambda p: id(p) not in ignored_params, net.parameters())
optimizer = optim.SGD([
                            {'params': base_params},
                            {'params': net.fc3.parameters(), 'lr': 0.001 * 100}
                        ], lr=0.001, momentum=0.9, weight_decay=1e-4)
# Assuming optimizer has two groups.
lambda1 = lambda epoch: epoch // 3
lambda2 = lambda epoch: 0.95 ** epoch

scheduler = LambdaLR(optimizer, lr_lambda=[lambda1, lambda2])

for i in range(100):
    train(...)
    validate(...)
    scheduler.step()
    print('epoch: ', i, 'lr: ', scheduler.get_lr())

输出:

epoch: 0 lr: [0.0, 0.1]
epoch: 1 lr: [0.0, 0.095]
epoch: 2 lr: [0.0, 0.09025]
epoch: 3 lr: [0.001, 0.0857375]
epoch: 4 lr: [0.001, 0.081450625]
epoch: 5 lr: [0.001, 0.07737809374999999]
epoch: 6 lr: [0.002, 0.07350918906249998]
epoch: 7 lr: [0.002, 0.06983372960937498]
epoch: 8 lr: [0.002, 0.06634204312890622]
epoch: 9 lr: [0.003, 0.0630249409724609]

为什么第一个参数组的学习率会是 0 呢? 来看看学习率是如何计算的。
第一个参数组的初始学习率设置为 0.001,
lambda1 = lambda epoch: epoch // 3,
第 1 个 epoch 时,由 lr = base_lr * lmbda(self.last_epoch),
可知道 lr = 0.001 (0//3) ,又因为 1//3 等于 0,所以导致学习率为 0。
第二个参数组的学习率变化,就很容易看啦,初始为 0.1, lr = 0.1 * 0.95^epoch ,当
epoch 为 0 时, lr=0.1 , epoch 为 1 时, lr=0.1
0.95。

附:给出画上述学习率变化图的程序:

# -*- coding:utf-8 -*-
'''本文件用于测试pytorch学习率调整策略'''

__author__ = 'puxitong from UESTC'

import torch
import torch.optim as optim
from torch.optim import lr_scheduler
from torchvision.models import AlexNet
import matplotlib.pyplot as plt 


model = AlexNet(num_classes=2)
optimizer = optim.SGD(params=model.parameters(), lr=0.1)

# 等间隔调整学习率,每训练step_size个epoch,lr*gamma
# scheduler = lr_scheduler.StepLR(optimizer, step_size=30, gamma=0.1)

# 多间隔调整学习率,每训练至milestones中的epoch,lr*gamma
# scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=[10, 30, 80], gamma=0.1)

# 指数学习率衰减,lr*gamma**epoch
# scheduler = lr_scheduler.ExponentialLR(optimizer, gamma=0.9)

# 余弦退火学习率衰减,T_max表示半个周期,lr的初始值作为余弦函数0处的极大值逐渐开始下降,
# 在epoch=T_max时lr降至最小值,即pi/2处,然后进入后半个周期,lr增大
# scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max=100, eta_min=0)

plt.figure()
x = list(range(100))
y = []
for epoch in range(100):
    scheduler.step()
    y.append(scheduler.get_lr()[0])

plt.plot(x, y)
plt.show()

2、手动调整学习率

手动调整学习率,通常可以定义如下函数:

def adjust_learning_rate(optimizer, epoch):
    """Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
    lr = args.lr * (0.1 ** (epoch // 30))
    for param_group in optimizer.param_groups:
        param_group['lr'] = lr

adjust_learning_rate() 函数就是通过for循环遍历取出每一个param_group,然后修改其中的键 ‘lr’ 的值,称之为手动调整学习率。

又如:

def adjust_learning_rate(epoch, lr):
    if epoch <= 81:  # 32k iterations
      return lr
    elif epoch <= 122:  # 48k iterations
      return lr/10
    else:
      return lr/100

该函数通过修改每个epoch下,各参数组中的lr来进行学习率手动调整,用法如下:

for epoch in range(epochs):
    lr = adjust_learning_rate(optimizer, epoch)  # 调整学习率
    optimizer = optim.SGD(net.parameters(), lr=lr, momentum=0.9, weight_decay=5e-4)
    ......
    optimizer.step()  # 采用新的学习率进行参数更新

四、实时打印学习率

如果想要每次迭代都实时打印学习率,这样可以每次step都能知道更新的最新学习率,可以使用

scheduler.get_lr()

它返回一个学习率列表,由参数组中的不同学习率组成,可通过列表索引来得到不同参数组中的学习率。




参考资料:
权重衰减(weight decay)与学习率衰减(learning rate decay)
CNN训练分类任务的优化策略(tricks)
学习率衰减
神经网络学习率(learning rate)的衰减
Pytorch中的学习率衰减及其用法
Pytorch中的学习率衰减及其用法
pytorch必须掌握的的4种学习率衰减策略
学习率衰减方法
学习率衰减(Learning rate decay)
深度学习优化方式
学习率优化方式

  • 4
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
在PyTorch中,学习率指数衰减是一种常用的学习率调整策略之一。学习率指数衰减通过逐步减小学习率的大小来优化模型的收敛速度和性能。参数大小是指在实际应用中常用的参数的大小。 学习率指数衰减的常用参数大小包括初始学习率衰减率和衰减步数。初始学习率是训练开始时的初始学习率大小,它决定了模型在初始阶段的更新步长。通常情况下,较大的初始学习率能够加快模型的收敛速度,但容易导致震荡和不稳定的情况。因此,一般会根据具体问题的需求和模型的复杂度来选择初始学习率的大小。 衰减率决定了学习率在每一次衰减步骤中的减小幅度。较小的衰减率会使学习率减小得更缓慢,而较大的衰减率会加速学习率的减小速度。衰减率的选择要基于具体问题的需要,一般情况下,可以通过尝试不同的衰减率来找到一个合适的值。 衰减步数是指学习率衰减的步数或次数。学习率会随着训练的进行逐步减小,每经过一定步数或次数,学习率就会衰减一次。衰减步数的选择应根据训练集的大小、模型的复杂性和收敛速度等因素来确定。较小的衰减步数会使学习率衰减得更快,而较大的衰减步数会使学习率下降得更缓慢。在实际应用中,可以通过试验和调整来找到一个适合的衰减步数。 总之,PyTorch学习率指数衰减的常用参数大小包括初始学习率衰减率和衰减步数。这些参数的选择要基于具体问题的需求和模型的复杂度,需要进行实验和调整来找到合适的值。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值