大模型-DeltaTuning-增量式01:Adapter-tuning(0.5-8%)【每个transformer层内加入2个Adapter层】【Adapter就是先降维再升维的全连接】

Adapter Tuning通过在每个Transformer层内插入Adapter层来解决大模型微调的昂贵成本问题。这种方法只训练特定任务的参数,降低了训练时的计算需求。Adapter模块设计包括在预训练模型层间插入降维-升维的全连接层结构。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Adapter Tuning

随着计算机硬件性能的提高,预训练模型参数量越来越多,在训练下游任务时进行全模型微调变得昂贵且耗时,Adapter 的出现缓解了这个问题。Adapter在预训练模型每层中插入用于下游任务的参数,在微调时将模型主体冻结,仅训练特定于任务的参数,减少训练时算力开销。

Adapter模块设计方法

 2019年,Houlsby N等人将Adapter引入NLP领域,作为全模型微调的一种替代方案。Adapter主体架构下图所示。




预训练模型微调 | 一文带你了解Adapter Tuning - 知乎

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值