数学分析(三)-函数极限1-函数极限概念1-1:x趋于∞时的函数极限【ε-M定义:若对∀ε>0存在正数M使得当x⩾M时有|f(x)-A|<ε,则称f当x趋于+∞时以A为极限】【类比数列极限ε-N定义】

本文探讨了当函数在自变量x趋向正无穷大时的极限概念,通过ε-M定义来描述函数值如何无限接近于定数A。以函数f(x)=x^1和g(x)=arctanx为例,解释了极限存在的直观含义,并给出了极限的几何意义,即不论带形区域多窄,总能找到相应M使函数值落在其中。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

设函数 f f f 定义在 [ a , + ∞ ) [a,+\infty) [a,+) 上, 类似于数列情形, 我们研究当自变量 x x x趋于 + ∞ +\infty + 时, 对应的函数值能否无限地接近于某个定数 A A A. 例如,对于函数 f ( x ) = 1 x f(x)=\cfrac{1}{x} f(x)=x1, 从图像上可见, 当 x x x 无限增大时,函数值无限地接近于 0 ; 而对于函数 g ( x ) = arctan ⁡ x g(x)=\arctan x g(x)=arctanx, 则当 x x x 趋于 + ∞ +\infty + 时函数值无限地接近于 π 2 \cfrac{\pi}{2} 2π. 我们称这两个函数当 x x x趋于 + ∞ +\infty + 时有极限.一般地, 当 x x x 趋于 + ∞ +\infty +时函数极限的精确定义如下:

定义 1

f f f 为定义在 [ a , + ∞ ) [a,+\infty) [a,+) 上的函数, A A A 为定数. 若对任给的 ε > 0 \varepsilon>0 ε>0, 存在正数 M M M ( ⩾ a )

内容概要:本文详细探讨了双馈风力发电机(DFIG)在Simulink环境下的建模方法及其在不同风速条件下的电流与电压波形特征。首先介绍了DFIG的基本原理,即定子直接接入电网,转子通过双向变流器连接电网的特点。接着阐述了Simulink模型的具体搭建步骤,包括风力机模型、传动系统模型、DFIG本体模型和变流器模型的建立。文中强调了变流器控制算法的重要性,特别是在应对风速变化,通过实调整转子侧的电压和电流,确保电流和电压波形的良好特性。此外,文章还讨论了模型中的关键技术和挑战,如转子电流环控制策略、低电压穿越性能、直流母线电压脉动等问题,并提供了具体的解决方案和技术细节。最终,通过对故障工况的仿真测试,验证了所建模型的有效性和优越性。 适用人群:从事风力发电研究的技术人员、高校相关专业师生、对电力电子控制系统感兴趣的工程技术人员。 使用场景及目标:适用于希望深入了解DFIG工作原理、掌握Simulink建模技能的研究人员;旨在帮助读者理解DFIG在不同风速条件下的动态响应机制,为优化风力发电系统的控制策略提供理论依据和技术支持。 其他说明:文章不仅提供了详细的理论解释,还附有大量Matlab/Simulink代码片段,便于读者进行实践操作。同,针对一些常见问题给出了实用的调试技巧,有助于提高仿真的准确性和可靠性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值