设函数 f f f 定义在 [ a , + ∞ ) [a,+\infty) [a,+∞) 上, 类似于数列情形, 我们研究当自变量 x x x趋于 + ∞ +\infty +∞ 时, 对应的函数值能否无限地接近于某个定数 A A A. 例如,对于函数 f ( x ) = 1 x f(x)=\cfrac{1}{x} f(x)=x1, 从图像上可见, 当 x x x 无限增大时,函数值无限地接近于 0 ; 而对于函数 g ( x ) = arctan x g(x)=\arctan x g(x)=arctanx, 则当 x x x 趋于 + ∞ +\infty +∞ 时函数值无限地接近于 π 2 \cfrac{\pi}{2} 2π. 我们称这两个函数当 x x x趋于 + ∞ +\infty +∞ 时有极限.一般地, 当 x x x 趋于 + ∞ +\infty +∞时函数极限的精确定义如下:
定义 1
设 f f f 为定义在 [ a , + ∞ ) [a,+\infty) [a,+∞) 上的函数, A A A 为定数. 若对任给的 ε > 0 \varepsilon>0 ε>0, 存在正数 M M M ( ⩾ a )