数学分析(四)-函数的连续性3-初等函数的连续性1:指数函数的连续性【aˣ·aʸ=aˣ⁺ʸ】【(aˣ)ʸ=aˣʸ】【指数函数aˣ(a>0)在R上连续】

从前面两节知道, 在基本初等函数中, 三角函数、反三角函数以及有理指数幂函数都是其定义域上的连续函数.

本节将讨论指数函数、对数函数与实指数幂函数的连续性, 以及初等函数的连续性.


在第一章中,我们已定义了实指数的乘幂, 并证明了指数函数 y = a x ( 0 < a ≠ 1 ) y=a^{x} \quad(0<a \neq 1) y=ax(0<a=1) R \mathbf{R} R上是严格单调的. 下面先把关于有理指数幂的一个重要性质推广到实指数幂,然后证明指数函数的连续性.

定理 4.10

a > 0 , α , β a>0, \alpha, \beta a>0,α,β 为任意两个实数,则有

a α ⋅ a β = a α + β , ( a α ) β = a α β . a^{\alpha} \cdot a^{\beta}=a^{\alpha+\beta}, \quad\left(a^{\alpha}\right)^{\beta}=a^{\alpha \beta} . aαaβ=aα+β,(aα)β=aαβ.


不妨设 a > 1 a>1 a>1, 由 a x a^{x} ax 的定义 (第一章 § 3 § 3 §3 定义 2 ), 即有

a x = sup ⁡ r ⩽ 1 { a ′ ∣ r  为有理数  } . a^{x}=\sup _{r \leqslant 1}\left\{a^{\prime} \mid r \text { 为有理数 }\right\} . ax=r1sup{ ar 为有理数 }.

依据上确界定义, 任给 ε > 0 \varepsilon>0 ε>0, 存在有理数 r ⩽ α r \leqslant \alpha rα s ⩽ β s \leqslant \beta sβ, 使得

a α − ε < a ′ , a β − ε < a ′ . a^{\alpha}-\varepsilon<a^{\prime}, \quad a^{\beta}-\varepsilon<a^{\prime} . aαε<a,aβε<a.

a x a^{x} ax 的严格递增性, 得

a r + s ⩽ a α + β . a^{r+s} \leqslant a^{\alpha+\beta} . ar+saα+β.

而由有理指数乘幕的性质, 有 a ′ ⋅ a ′ = a ∗ ∗ ∗ a^{\prime} \cdot a^{\prime}=a^{* * *} aa=a∗∗∗, 故得

( a α − ε ) ( a β − ε ) < a ′ + ⩽ a

  • 6
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值