高等代数(三)-线性方程组03:线性相关性

本文详细介绍了线性代数中的线性相关性和向量组等价性的概念。通过定义、性质和实例解释了向量如何线性表出,以及如何判断线性相关性和线性无关性。同时,阐述了极大线性无关组的性质和秩的概念,以及这些概念与线性方程组解的关系。
摘要由CSDN通过智能技术生成

§ 3 线性相关性
以下我们总是在一固定的数域 P P P 上的 n n n 维向量空间中进行讨论,
不再每次说明了.
在这一节我们来进一步研究向量之间的关系.
两个向量之间最简单的关系是成比例. 所谓向量 α \boldsymbol{\alpha} α
β \boldsymbol{\beta} β 成比例就是说有一数 k k k, 使
α = k β .  \boldsymbol{\alpha}=k \boldsymbol{\beta} \text {. } α=kβ
在多个向量之间,成比例的关系表现为线性组合.
定义 9 向量 α \boldsymbol{\alpha} α 称为向量组
β 1 , β 2 , ⋯   , β \boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \cdots, \boldsymbol{\beta} β1,β2,,β,
的一个线性组合, 如果有数域 P P P 中的数
k 1 , k 2 , ⋯   , k ,  k_{1}, k_{2}, \cdots, k_{\text {, }} k1,k2,,k, 使
α = k 1 β 1 + k 2 β 2 + ⋯ + k 1 β ∗ . \boldsymbol{\alpha}=k_{1} \boldsymbol{\beta}_{1}+k_{2} \boldsymbol{\beta}_{2}+\cdots+k_{1} \boldsymbol{\beta}_{*} . α=k1β1+k2β2++k1β.
例如, § 1 的方程组 (9) 的三个方程可以用向量
α 1 = ( 2 , − 1 , 3 , 1 ) , α 2 = ( 4 , − 2 , 5 , 4 ) , α 3 = ( 2 , − 1 , 4 , − 1 ) \boldsymbol{\alpha}_{1}=(2,-1,3,1), \quad \boldsymbol{\alpha}_{2}=(4,-2,5,4), \quad \boldsymbol{\alpha}_{3}=(2,-1,4,-1) α1=(2,1,3,1),α2=(4,2,5,4),α3=(2,1,4,1)
来代表. 我们知道, 第三个方程等于第一个方程的 3 倍减去第二个方程,
这等价于 α 3 = \boldsymbol{\alpha}_{3}= α3=
3 α 1 − α 2 3 \boldsymbol{\alpha}_{1}-\boldsymbol{\alpha}_{2} 3α1α2. 这个等式表示
α 3 \boldsymbol{\alpha}_{3} α3
α 1 , α 2 \boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2} α1,α2 的一个线性组合.
又如,任一个 n n n 维向量
α = ( a 1 , a 2 , ⋯   , a n ) \boldsymbol{\alpha}=\left(a_{1}, a_{2}, \cdots, a_{n}\right) α=(a1,a2,,an)
都是向量组
{ ε 1 = ( 1 , 0 , ⋯   , 0 ) , ε 2 = ( 0 , 1 , ⋯   , 0 ) , ⋯ ⋯ ⋯ ⋯ ε n = ( 0 , 0 , ⋯   , 1 ) \left\{\begin{aligned} \boldsymbol{\varepsilon}_{1}= & (1,0, \cdots, 0), \\ \boldsymbol{\varepsilon}_{2}= & (0,1, \cdots, 0), \\ & \cdots \cdots \cdots \cdots \\ \boldsymbol{\varepsilon}_{n}= & (0,0, \cdots, 1) \end{aligned}\right. ε1=ε2=εn=(1,0,,0),(0,1,,0),⋯⋯⋯⋯(0,0,,1)
的一个线性组合. 因为
α = a 1 ε 1 + a 2 ε 2 + ⋯ + a n ε n . \boldsymbol{\alpha}=a_{1} \varepsilon_{1}+a_{2} \varepsilon_{2}+\cdots+a_{n} \varepsilon_{n} . α=a1ε1+a2ε2++anεn.
向量 ε 1 , ε 2 , ⋯   , ε n \varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{n} ε1,ε2,,εn 称为
n n n 维单位向量.
由定义可以立即看出, 零向量是任一向量组的线性组合 (只要取系数全为 0
就行了).
当向量 α \alpha α 是向量组
β 1 , β 2 , ⋯   , β \beta_{1}, \beta_{2}, \cdots, \boldsymbol{\beta} β1,β2,,β, 的一个线性组合时,
我们也说 α \alpha α 可以经向量组
β 1 , β 2 , ⋯   , β \boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \cdots, \boldsymbol{\beta} β1,β2,,β,
线性表出.
定义 10 如果向量组
α 1 , α 2 , ⋯   , α t \boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{t} α1,α2,,αt
中每一个向量 α i ( i = 1 , 2 , ⋯   , t ) \boldsymbol{\alpha}_{i}(i=1,2, \cdots, t) αi(i=1,2,,t) 都可以经向量组
β 1 , β 2 , ⋯   , β \boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \cdots, \boldsymbol{\beta} β1,β2,,β,
线性表出, 那么向量组
α 1 , α 2 , ⋯   , α \boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha} α1,α2,,α,
就称为可以经向量组
β 1 , β 2 , ⋯   , β \boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \cdots, \boldsymbol{\beta} β1,β2,,β,线性表出.
如果两个向量组互相可以线性表出, 它们就称为等价.
例如, 设
α 1 = ( 1 , 1 , 1 ) , α 2 = ( 1 , 2 , 0 ) ; β 1 = ( 1 , 0 , 2 ) , β 2 = ( 0 , 1 , − 1 ) . \begin{array}{cc} \boldsymbol{\alpha}_{1}=(1,1,1), & \boldsymbol{\alpha}_{2}=(1,2,0) ; \\ \boldsymbol{\beta}_{1}=(1,0,2), & \boldsymbol{\beta}_{2}=(0,1,-1) . \end{array} α1=(1,1,1),β1=(1,0,2),α2=(1,2,0);β2=(0,1,1).

则向量组 α 1 , α 2 \boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2} α1,α2 与向量组
β 1 , β 2 \boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2} β1,β2 是等价的.
由定义不难证明,每一个向量组都可以经它自身线性表出. 同时, 如果向量组
α 1 \boldsymbol{\alpha}_{1} α1,
α 2 , ⋯   , α t \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{t} α2,,αt 可以经向量组
β 1 , β 2 , ⋯   , β \boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \cdots, \boldsymbol{\beta} β1,β2,,β,
线性表出, 向量组
β 1 , β 2 , ⋯   , β \boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \cdots, \boldsymbol{\beta} β1,β2,,β,
可以经向量组 γ 1 \boldsymbol{\gamma}_{1} γ1, γ 2 , ⋯   , γ n \gamma_{2}, \cdots, \gamma_{n} γ2,,γn
线性表出, 那么向量组
α 1 , α 2 , ⋯   , α \boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha} α1,α2,,α,
可以经向量组 γ 1 , γ 2 , ⋯   , γ p \gamma_{1}, \gamma_{2}, \cdots, \gamma_{p} γ1,γ2,,γp 线性表出.
事实上,如果
α i = ∑ j = 1 j k i β j , i = 1 , 2 , ⋯   , t , β j = ∑ m = 1 p l j m γ m , j = 1 , 2 , ⋯   , s , \begin{array}{l} \boldsymbol{\alpha}_{i}=\sum_{j=1}^{j} k_{i} \boldsymbol{\beta}_{j}, \quad i=1,2, \cdots, t, \\ \boldsymbol{\beta}_{j}=\sum_{m=1}^{p} l_{j m} \boldsymbol{\gamma}_{m}, \quad j=1,2, \cdots, s, \end{array} αi=j=1jkiβj,i=1,2,,t,βj=m=1pljmγm,j=1,2,,s,


α i = ∑ j = 1 ′ k i j ∑ m = 1 p l j m γ m = ∑ m = 1 p ( ∑ j = 1 ∞ k i j l j m ) γ m , i = 1 , 2 , ⋯   , t . \boldsymbol{\alpha}_{i}=\sum_{j=1}^{\prime} k_{i j} \sum_{m=1}^{p} l_{j m} \boldsymbol{\gamma}_{m}=\sum_{m=1}^{p}\left(\sum_{j=1}^{\infty} k_{i j} l_{j m}\right) \gamma_{m}, \quad i=1,2, \cdots, t . αi=j=1kijm=1pljmγm=m=1p(j=1kijljm)γm,i=1,2,,t.
这就是说, 向量组
α 1 , α 2 , ⋯   , α \boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha} α1,α2,,α,
中每一个向量都可以经向量组 γ 1 , γ 2 , ⋯   , γ p \gamma_{1}, \gamma_{2}, \cdots, \gamma_{p} γ1,γ2,,γp
线性表出,因而向量组
α 1 , α 2 , ⋯   , α \boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha} α1,α2,,α
可以经向量组 γ 1 , γ 2 , ⋯   , γ p \gamma_{1}, \gamma_{2}, \cdots, \gamma_{p} γ1,γ2,,γp 线性表出.
由上述的结论,得知向量组之间的等价有以下性质:

  1. 自反性: 每一个向量组都与它自身等价.
  2. 对称性: 如果向量组
    α 1 , α 2 , ⋯   , α \boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha} α1,α2,,α,

    β 1 , β 2 , ⋯   , β ,  \boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \cdots, \boldsymbol{\beta}_{\text {, }} β1,β2,,β
    等价, 那么向量组 β 1 \boldsymbol{\beta}_{1} β1,
    β 2 , ⋯   , β \boldsymbol{\beta}_{2}, \cdots, \boldsymbol{\beta} β2,,β, 也与
    α 1 , α 2 , ⋯   , α \boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha} α1,α2,,α,
    等价.
  3. 传递性: 如果向量组
    α 1 , α 2 , ⋯   , α \boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha} α1,α2,,α,

    β 1 , β 2 , ⋯   , β 1 \boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \cdots, \boldsymbol{\beta}_{1} β1,β2,,β1
    等价,
    β 1 , β 2 , ⋯   , β \boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \cdots, \boldsymbol{\beta} β1,β2,,β,
    γ 1 \boldsymbol{\gamma}_{1} γ1, γ 2 , ⋯   , γ p \gamma_{2}, \cdots, \gamma_{p} γ2,,γp 等价,
    那么向量组
    α 1 ,
  • 23
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值