概率论与数理统计教程(二)-随机变量及其分布03:随机变量的方差与标准差

§ 2.3 随机变量的方差与标准差
随机变量 X X X 的数学期望 E ( X ) E(X) E(X) 是分布的一种位置特征数, 它刻画了 X X X
的取值总在 E ( X ) E(X) E(X) 周围波动. 但这个位置特征数无法反映出随机变量取值的
“波动大小”, 譬如 X X X Y Y Y 的分布列分别为
X X X -1 0 1


P P P 1 / 3 1 / 3 1/3 1 / 3 1 / 3 1/3 1 / 3 1 / 3 1/3
Y Y Y -10 0 10


P P P 1 / 3 1 / 3 1/3 1 / 3 1 / 3 1/3 1 / 3 1 / 3 1/3
尽管它们的数学期望都是 0 , 但显然 Y Y Y 取值的波动要比 X X X 取值的波动大.
如何用数值来反映随机变量取值的 “波动” 大小, 是本节要研究的问题.
而以下定义的方差与标准差正是度量此种波动大小的最重要的两个特征数.
2.3.1 方差与标准差的定义
设随机变量 X X X 的均值为 a = E ( X ) , X a=E(X), X a=E(X),X 的取值当然不一定恰好是 a a a,会有偏离.
偏离的量 X − a X-a Xa 有正有负, 为了不使正负偏离彼此抵消, 我们一般考虑
( X − a ) 2 (X-a)^{2} (Xa)2, 而不去考虑数学上难以处理的绝对值 ∣ X − a ∣ |X-a| Xa. 因为 ( X − a ) 2 (X-a)^{2} (Xa)2
仍是一个随机变量, 所以取其均值 E ( X − E(X- E(X a ) 2 a)^{2} a)2 就可以刻画 X X X 的 “波动”
程度,这个量被称作 X X X 的方差, 其定义如下:
定义 2.3.1 若随机变量 X 2 X^{2} X2 的数学期望 E ( X 2 ) E\left(X^{2}\right) E(X2) 存在,
则称偏差平方 ( X − E ( X ) ) 2 (X-E(X))^{2} (XE(X))2 的数学期望 E ( X − E ( X ) ) 2 E(X-E(X))^{2} E(XE(X))2 为随机变量 X X X
(或相应分布) 的方差, 记为
Var ⁡ ( X ) = E ( X − E ( X ) ) 2 \operatorname{Var}(X)=E(X-E(X))^{2} Var(X)=E(XE(X))2
= { ∑ i ( x i − E ( X ) ) 2 p ( x i ) ,  在离散场合,  ∫ − ∞ ∞ ( x − E ( X ) ) 2 p ( x ) d x ,  在连续场合.  =\left\{\begin{array}{l} \sum_{i}\left(x_{i}-E(X)\right)^{2} p\left(x_{i}\right), \text { 在离散场合, } \\ \int_{-\infty}^{\infty}(x-E(X))^{2} p(x) \mathrm{d} x, \text { 在连续场合. } \end{array}\right. ={ i(xiE(X))2p(xi), 在离散场合(xE(X))2p(x)dx, 在连续场合
称方差的正平方根 Var ⁡ ( X ) \sqrt{\operatorname{Var}(X)} Var(X) 为随机变量 X X X
(或相应分布) 的标准差, 记为 σ ( X ) \sigma(X) σ(X), 或 σ X \sigma_{X} σX.
方差与标准差的功能相似, 它们都是用来描述随机变量取值的集中与分散程度
(即散布大小) 的两个特征数.方差与标准差愈小,随机变量的取值愈集中;
方差与标准差愈大,随机变量的取值愈分散.
方差与标准差之间的差别主要在量纲上,
由于标准差与所讨论的随机变量、数学期望有相同的量纲, 其加减
E ( X ) ± k σ ( X ) E(X) \pm k \sigma(X) E(X)±(X) 是有意义的 ( k k k 为正实数), 所以在实际中,
人们比较乐意选用标准差, 但标准差的计算必须通过方差才能算得.
另外要指出的是: 如果随机变量 X X X 的数学期望存在, 其方差不一定存在; 而当
X X X 的方差存在时, 则 E ( X ) E(X) E(X) 必定存在, 其原因在于 ∣ x ∣ ⩽ x 2 + 1 |x| \leqslant x^{2}+1 xx2+1
总是成立的.
例 2.3.1 图 2.3.1 上有三个分布:
三角分布、均匀分布和倒三角分布的密度函数及它们的图形. 从图上可以看出,
这三个分布都位于区间 ( − 1 , 1 ) (-1,1) (1,1) 上, 并且关于纵轴对称,
从而得知这三个分布的期望均为 0 . 但它们的方差不等 (因此标准差也不等),
这可分别由各自的分布 (见图 2.3.1) 算得
Var ⁡ ( X 1 ) = E ( X 1 2 ) = ∫ − 1 0 x 2 ( 1 + x ) d x + ∫ 0 1 x 2 ( 1 − x ) d x = 1 6 . Var ⁡ ( X 2 ) = E ( X 2 2 ) = ∫ − 1 1 x 2 2   d x = 1 3 . Var ⁡ ( X 3 ) = E ( X 3 2 ) = ∫ − 1 0 x 2 ( − x ) d x + ∫ 0 1 x 2 ⋅ x   d x = 1 2 . \begin{array}{l} \operatorname{Var}\left(X_{1}\right)=E\left(X_{1}^{2}\right)=\int_{-1}^{0} x^{2}(1+x) \mathrm{d} x+\int_{0}^{1} x^{2}(1-x) \mathrm{d} x=\frac{1}{6} . \\ \operatorname{Var}\left(X_{2}\right)=E\left(X_{2}^{2}\right)=\int_{-1}^{1} \frac{x^{2}}{2} \mathrm{~d} x=\frac{1}{3} . \\ \operatorname{Var}\left(X_{3}\right)=E\left(X_{3}^{2}\right)=\int_{-1}^{0} x^{2}(-x) \mathrm{d} x+\int_{0}^{1} x^{2} \cdot x \mathrm{~d} x=\frac{1}{2} . \end{array} Var(X1)=E(X12)=10x2(1+x)dx+01x2(1x)dx=61.Var(X2)=E(X22)=112x2 dx=31.Var(X3)=E(X32)=10x2(x)dx

  • 18
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值