概率论与数理统计教程(三)-多维随机变量及其分布02:边际分布与随机变量的独立性

本文介绍了在概率论与数理统计中,如何从二维随机变量的联合分布中获取边际分布,并通过例子展示了如何计算边际分布函数、边际分布列和边际密度函数。此外,文章还探讨了随机变量的独立性,定义了独立性的条件,并通过实例解释了如何判断随机变量是否独立。
摘要由CSDN通过智能技术生成

§ 3.2 边际分布与随机变量的独立性
二维联合分布函数 (二维联合分布列、二维联合密度函数也一样)
含有丰富的信息,主要有以下三方面信息:
- 每个分量的分布 (每个分量的所有信息), 即边际分布.
- 两个分量之间的关联程度, 在 § 3.4 § 3.4 §3.4 中用协方差和相关系数来描述.
- 给定一个分量时,另一个分量的分布,即条件分布.
我们的目的是将这些信息从联合分布中挖掘出来, 本节先讨论边际分布.
3.2.1 边际分布函数
如果在二维随机变量 ( X , Y ) (X, Y) (X,Y) 的联合分布函数 F ( x , y ) F(x, y) F(x,y) 中令
y → ∞ y \rightarrow \infty y, 由于 { Y < ∞ } \{Y<\infty\} { Y<} 为必然事件,故可得
lim ⁡ y → ∞ F ( x , y ) = P ( X ⩽ x , Y < ∞ ) = P ( X ⩽ x ) , \lim \limits_{y \rightarrow \infty} F(x, y)=P(X \leqslant x, Y<\infty)=P(X \leqslant x), ylimF(x,y)=P(Xx,Y<)=P(Xx),
这是由 ( X , Y ) (X, Y) (X,Y) 的联合分布函数 F ( x , y ) F(x, y) F(x,y) 求得的 X X X 的分布函数, 被称为
X X X 的边际分布, 记为
F X ( x ) = F ( x , ∞ ) .  F_{X}(x)=F(x, \infty) \text {. } FX(x)=F(x,)
类似地, 在 F ( x , y ) F(x, y) F(x,y) 中令 x → ∞ x \rightarrow \infty x, 可得 Y Y Y 的边际分布
F Y ( y ) = F ( ∞ , y ) . F_{Y}(y)=F(\infty, y) . FY(y)=F(,y).
在三维随机变量 ( X , Y , Z ) (X, Y, Z) (X,Y,Z) 的联合分布函数 F ( x , y , z ) F(x, y, z) F(x,y,z) 中,
用类似的方法可得到更多的边际分布函数:
F X ( x ) = F ( x , ∞ , ∞ ) , F Y ( y ) = F ( ∞ , y , ∞ ) , F Z ( z ) = F ( ∞ , ∞ , z ) , F X , Y ( x , y ) = F ( x , y , ∞ ) , F X , Z ( x , z ) = F ( x , ∞ , z ) , F Y , Z ( y , z ) = F ( ∞ , y , z ) . \begin{array}{l} F_{X}(x)=F(x, \infty, \infty), \\ F_{Y}(y)=F(\infty, y, \infty), \\ F_{Z}(z)=F(\infty, \infty, z), \\ F_{X, Y}(x, y)=F(x, y, \infty), \\ F_{X, Z}(x, z)=F(x, \infty, z), \\ F_{Y, Z}(y, z)=F(\infty, y, z) . \end{array} FX(x)=F(x,,),FY(y)=F(,y,),FZ(z)=F(,,z),FX,Y(x,y)=F(x,y,),FX,Z(x,z)=F(x,,z),FY,Z(y,z)=F(,y,z).

在更高维的场合, 也可类似地从联合分布函数获得其低维的边际分布函数.
臂如,五维联合分布有 5 个一维边际分布、 10 个二维边际分布, 10
个三维边际分布和 5 个四维边际分布.
例 3.2.1 设二维随机变量 ( X , Y ) (X, Y) (X,Y) 的联合分布函数为
F ( x , y ) = { 1 − e − x − e − y + e − x − y − λ x y , x > 0 , y > 0. 0 ,  其他.  F(x, y)=\left\{\begin{array}{ll} 1-\mathrm{e}^{-x}-\mathrm{e}^{-y}+\mathrm{e}^{-x-y-\lambda x y}, & x>0, y>0 . \\ 0, & \text { 其他. } \end{array}\right. F(x,y)={ 1exey+exyλxy,0,x>0,y>0. 其他
这个分布被称为二维指数分布, 其中参数 λ > 0 \lambda>0 λ>0.
由此联合分布函数 F ( x , y ) F(x, y) F(x,y), 容易获得 X X X Y Y Y 的边际分布函数为
F X ( x ) = F ( x , ∞ ) = { 1 − e − x , x > 0 , 0 , x ⩽ 0. F Y ( y ) = F ( ∞ , y ) = { 1 − e − y , y > 0 , 0 , y ⩽ 0. \begin{array}{l} F_{X}(x)=F(x, \infty)=\left\{\begin{array}{ll} 1-\mathrm{e}^{-x}, & x>0, \\ 0, & x \leqslant 0 . \end{array}\right. \\ F_{Y}(y)=F(\infty, y)=\left\{\begin{array}{ll} 1-\mathrm{e}^{-y}, & y>0, \\ 0, & y \leqslant 0 . \end{array}\right. \end{array} FX(x)=F(x,)={ 1ex,0,x>0,x0.FY(y)=F(,y)={ 1ey,0,y>0,y0.

它们都是一维指数分布. 不同的 λ > 0 \lambda>0 λ>0 对应不同的二维指数分布,
但它们的两个边际分布与参数 λ > 0 \lambda>0 λ>0 无关. 这说明:
二维联合分布不仅含有每个分量的概率分布, 而且还含有两个变量 X X X Y Y Y
间关系的信息, 这正是人们要研究多维随机变量的原因.
3.2.2 边际分布列
在二维离散随机变量 ( X , Y ) (X, Y) (X,Y) 的联合分布列
{ P ( X = x i , Y = y j ) } \left\{P\left(X=x_{i}, Y=y_{j}\right)\right\} { P(X=xi,Y=yj)} 中, 对 j j j
求和所得的分布列
∑ j = 1 ∞ P ( X = x i , Y = y j ) = P ( X = x i ) , i = 1 , 2 , ⋯ \sum_{j=1}^{\infty} P\left(X=x_{i}, Y=y_{j}\right)=P\left(X=x_{i}\right), \quad i=1,2, \cdots j=1P(X=xi,Y=yj)=P(X=xi),i=1,2,
被称为 X X X 的边际分布列. 类似地, 对 i i i 求和所得的分布列
∑ i = 1 ∞ P ( X = x i , Y = y j ) = P ( Y = y j ) , j = 1 , 2 , ⋯ \sum_{i=1}^{\infty} P\left(X=x_{i}, Y=y_{j}\right)=P\left(Y=y_{j}\right), \quad j=1,2, \cdots i=1P(X=xi,Y=yj)=P(Y=yj),j=1,2,
被称为 Y Y Y 的边际分布列.
例 3.2.2 设二维随机变量 ( X , Y ) (X, Y) (X,Y) 有如下的联合分布列


    1      2      3

0 0.09 0.21 0.24
1 0.07 0.12 0.27


X X X Y Y Y 的边际分布列.
解 在上述联合分布列中, 对每一行求和得 0.54 与 0.46 ,
并把它们写在对应行的右侧, 这就是 X X X 的边际分布列. 再对每一列求和, 得
0.16 , 0.33 0.16,0.33 0.16,0.33 和 0.51 , 并把它们写在对应列的下侧, 这就是 Y Y Y 的边际分布列.


  0        1      2      3     0.54
  1       0.09   0.21   0.24   0.46

P ( Y = j ) P(Y=j) P(Y=j) 0.07 0.12 0.27 1


3.2.3 边际密度函数
如果二维连续随机变量 ( X , Y ) (X, Y) (X,Y) 的联合密度函数为 p ( x , y ) p(x, y) p(x,y), 因为
F x ( x ) = F ( x , ∞ ) = ∫ − ∞ x ( ∫ − ∞ ∞ p ( u , v ) d v ) d u = ∫ − ∞ x p X ( u ) d u , F Y ( y ) = F ( ∞ , y ) = ∫ − ∞ y ( ∫ − ∞ ∞ p ( u , v ) d u ) d v = ∫ − ∞ y p Y ( v ) d v , \begin{array}{l} F_{x}(x)=F(x, \infty)=\int_{-\infty}^{x}\left(\int_{-\infty}^{\infty} p(u, v) \mathrm{d} v\right) \mathrm{d} u=\int_{-\infty}^{x} p_{X}(u) \mathrm{d} u, \\ F_{Y}(y)=F(\infty, y)=\int_{-\infty}^{y}\left(\int_{-\infty}^{\infty} p(u, v) \mathrm{d} u\right) \mathrm{d} v=\int_{-\infty}^{y} p_{Y}(v) \mathrm{d} v, \end{array} Fx(x)=F(x,)=x(p(u,v)dv)du=xpX(u)du,FY(y)=F(,y)=y(p(u,v)du)dv=ypY(v)dv,

其中 p x ( x ) p_{x}(x) px(x) p Y ( y ) p_{Y}(y) pY(y) 分别为
p x ( x ) = ∫ − ∞ ∞ p ( x , y ) d y , p Y ( y ) = ∫ − ∞ ∞ p ( x , y ) d x . \begin{array}{l} p_{x}(x)=\int_{-\infty}^{\infty} p(x, y) \mathrm{d} y, \\ p_{Y}(y)=\int_{-\infty}^{\infty} p(x, y) \mathrm{d} x . \end{array} px(x)=p(x,y)dy,pY(y)=p(x,y)dx.

它们恰好处于密度函数位置, 故称上式给出的 p X ( x ) p_{X}(x) pX(x) X X X
的边际密度函数, p Y ( y ) p_{Y}(y) pY(y) Y Y Y的边际密度函数.
由联合密度函数求边际密度函数时, 要注意积分区域的确定.
例 3.2.3 设二维随机变量 ( X , Y ) (X, Y) (X,Y) 的联合密度函数为
p (

  • 18
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值