复变函数论1-3-复变函数1-复变函数的概念3:映射、入变换、满变换、一一变换【复变函数:两个复平面上的点集间的映射】

本文介绍了复变函数的概念,包括映射、入变换、满变换和一一变换。通过定义和实例解释了如何将复平面上的点集通过函数对应到另一个复平面上,并探讨了反函数和逆变换的性质。举例说明了特定复变函数如何改变复平面上的几何形状,如对称映射和曲线的变换。
摘要由CSDN通过智能技术生成

在数学分析中,我们常常把函数用几何图形表示出来, 在研究函数的性质时,这些几何图形给我们很多直观的帮助.

现在,我们就不能借助于同一个平面或同一个三维空间中的几何图形来表示复变函数. 因由 (1.18) 式, f ( x + i y ) = u + i v f(x+\mathrm{i} y)=u+\mathrm{i} v f(x+iy)=u+iv, 要描出 w = w= w= f ( z ) f(z) f(z)的图形, 必须采用四维空间, 也就是 ( u , v , x , y ) (u, v, x, y) (u,v,x,y) 空间, 为了避免这个困难,我们取两张复平面, 分别称为 z z z 平面和 w w w 平面 (在个别情形下,为了方便,也可将它们叠成一张平面, 如图 1,8).

注意到, 在复平面上不区分"点"和 “数”, 也不再区分 “点集” 和"数集",我们把复变函数理解为两个复平面上的点集间的对应(映射或变换).

具体地说,复变函数 w = f ( z ) w=f(z) w=f(z) 给出了从 z z z 平面上的点集 E E E w w w 平面上的点集 F F F间的一个对应关系 (图 1.17). 与点 z ∈ E z \in E zE 对应的点 w = f ( z ) w=f(z) w=f(z) 称为点 z z z像点, 同时点 z z z 就称为点 w = w= w= f ( z ) f(z) f(z)原像. 为了方便,以后也不再区分函数、映射和变换.

在这里插入图片描述

必须指出, 像点的原像可能不只一点, 例如 w = z 2 w=z^{2} w=z2, 则 z = ± 1 z= \pm 1 z=±1的像点均为 w = 1 w=1 w=1,因此 w = 1 w=1 w=1 的原像是两个点 z = ± 1 z= \pm 1 z=±1.

定义 1.13

如对 z z z 平面上点集 E E E 的任一点 z z z, 有 w w w 平面上点集 F F F的点 w w w, 使得 w = f ( z ) w=f(z) w=f(z), 则称 w = f ( z ) w=f(z) w=f(z) E E E 变 (映) 人

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值