复变函数论6-留数理论及其应用2-1-用留数定理计算实积分5:杂例【菲涅尔(Fresnel)积分】

本文通过两个实例展示了如何利用留数定理计算反常积分。首先,通过泊松积分(6.16)推导出菲涅尔积分∫0+∞cosx2 dx 和 ∫0+∞sinx2 dx的结果,然后计算了积分∫0+∞e−x2cosbx dx,讨论了辅助函数和路径选择的重要性。
摘要由CSDN通过智能技术生成

下面我们举出两个例子来说明,计算反常积分有时要用种种不同的方式来选择积分路径.

例 6.16
假定已知泊松 (Poisson) 积分

∫ 0 + ∞ e − t 2   d t = π 2 , ( 6.16 ) \int_{0}^{+\infty} \mathrm{e}^{-t^{2}} \mathrm{~d} t=\frac{\sqrt{\pi}}{2}, \quad\quad(6.16) 0+et2 dt=2π ,(6.16)

试计算菲涅尔 (Fresnel) 积分

∫ 0 + ∞ cos ⁡ x 2   d x  及  ∫ 0 + ∞ sin ⁡ x 2   d x . \int_{0}^{+\infty} \cos x^{2} \mathrm{~d} x \text { 及 } \int_{0}^{+\infty} \sin x^{2} \mathrm{~d} x . 0+cosx2 dx  0+sinx2 dx.


考察辅助函数

f ( z ) = e − z 2 , f(z)=\mathrm{e}^{-z^{2}}, f(z)=ez2,

它是一个整函数. 并取如图 6.11 的辅助积分路径 C R C_{R} CR.则
在这里插入图片描述
0 = ∫ C R e − z 2   d z = ∫ 0 R e − x 2   d x + ∫ Γ R e − z 2   d z + ∫ R 0 e − x 2 e π 2 e π 4   d x . ( 6.17 ) \begin{aligned} 0 & =\int_{C_{R}} \mathrm{e}^{-z^{2}} \mathrm{~d} z \\ & =\int_{0}^{R} \mathrm{e}^{-x^{2}} \mathrm{~d} x+\int_{\Gamma_{R}} \mathrm{e}^{-z^{2}} \mathrm{~d} z+\int_{R}^{0} \mathrm{e}^{-x^{2}} \mathrm{e}^{\frac{\pi}{2}} \mathrm{e}^{\frac{\pi}{4}} \mathrm{~d} x . \quad\quad(6.17) \end{aligned} 0=CRez2 dz=0Rex2 dx+ΓRez2 dz+R0ex2e2πe4π dx.(6.17)

∣ ∫ Γ R e − z 2   d z ∣ = ∣ ∫ 0 π 4 e − R 2 ( cos ⁡ 2 φ + i s i n 2 φ ) i R e i φ d φ ∣ ⩽ ∫ 0 π 4 e − R 2 cos ⁡ 2 φ R   d φ = R 2 ∫ 0 π 2 e − R 2 sin ⁡ θ d θ (  令  2 φ = π 2 − θ ) ⩽ R 2 ∫ 0 2 2 e − R 2 ⋅ 2 θ π d θ ( 若尔当不等式 ) = − R 2 ⋅ π 2 R 2 e − 2 R 2 π θ ∣ θ = 0 θ − π 2 = π 4 R ( 1 − e − R 2 ) . \begin{aligned} \left|\int_{\Gamma_{R}} \mathrm{e}^{-z^{2}} \mathrm{~d} z\right| & =\left|\int_{0}^{\frac{\pi}{4}} \mathrm{e}^{-R^{2}(\cos 2 \varphi+\mathrm{isin} 2 \varphi)} \mathrm{i} R \mathrm{e}^{\mathrm{i} \varphi} \mathrm{d} \varphi\right| \\ & \leqslant \int_{0}^{\frac{\pi}{4}} \mathrm{e}^{-R^{2} \cos 2 \varphi} R \mathrm{~d} \varphi \\ & =\frac{R}{2} \int_{0}^{\frac{\pi}{2}} \mathrm{e}^{-R^{2} \sin \theta} \mathrm{d} \theta \quad\left(\text { 令 } 2 \varphi=\frac{\pi}{2}-\theta\right) \\ &\leqslant \frac{R}{2} \int_{0}^{\frac{2}{2}} \mathrm{e}^{-R^{2} \cdot \frac{2 \theta}{\pi}} \mathrm{d} \theta \quad(若尔当不等式) \\ &=-\left.\frac{R}{2} \cdot \frac{\pi}{2 R^{2}} \mathrm{e}^{-\frac{2 R^{2}}{\pi} \theta}\right|_{\theta=0} ^{\theta-\frac{\pi}{2}} \\ & =\frac{\pi}{4 R}\left(1-\mathrm{e}^{-R^{2}}\right) . \end{aligned} ΓRez2 dz = 04πeR2(cos2φ+isin2φ)iReiφdφ

  • 18
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值