数学分析(二十一)-重积分5-三重积分2:化三重积分为累次积分【∭ᵥf(x,y,z)dxdydz=∬dxdy∫f(x,y,z)dz】

若函数 f(x,y,z)f(x, y, z)f(x,y,z) 在长方体V=[a,b]×[c,d]×[e,h]V=[a, b] \times[c, d] \times[e, h]V=[a,b]×[c,d]×[e,h] 上的三重积分存在, 且对任意(x,y)∈D=[a,b]×[c,d],g(x,y)=∫ehf(x,y,z)dz(x, y) \in D=[a, b] \times[c, d], g(x, y)=\int_{e}^{h} f(x, y, z) \mathrm{d} z(x,y)∈D=[a,b]×[
摘要由CSDN通过智能技术生成

定理 21.15

若函数 f ( x , y , z ) f(x, y, z) f(x,y,z) 在长方体 V = [ a , b ] × [ c , d ] × [ e , h ] V=[a, b] \times[c, d] \times[e, h] V=[a,b]×[c,d]×[e,h] 上的三重积分存在, 且对任意 ( x , y ) ∈ D = [ a , b ] × [ c , d ] , g ( x , y ) = ∫ e h f ( x , y , z ) d z (x, y) \in D=[a, b] \times[c, d], g(x, y)=\int_{e}^{h} f(x, y, z) \mathrm{d} z (x,y)D=[a,b]×[c,d],g(x,y)=ehf(x,y,z)dz存在, 则积分 ∬ D g ( x , y ) d x   d y \iint_{D} g(x, y) \mathrm{d} x \mathrm{~d} y Dg(x,y)dx dy也存在,且

∭ V f ( x , y , z ) d x   d y   d z = ∬ D   d x   d y ∫ e h f ( x , y , z ) d z ( 1 ) \begin{aligned} \iiint_{V} f(x, y, z) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z=\iint_{D} \mathrm{~d} x \mathrm{~d} y \int_{e}^{h} f(x, y, z) \mathrm{d} z \quad\quad(1)\end{aligned} Vf(x,y,z)dx dy dz=D dx dyehf(x,y,z)dz(1)


用平行于坐标平面的平面作分割 T T T, 它把 V V V 分成有限多个小长方体

V i j k = [ x i − 1 , x i ] × [ y j − 1 , y j ] × [ z k − 1 , z k ] . V_{i j k}=\left[x_{i-1}, x_{i}\right] \times\left[y_{j-1}, y_{j}\right] \times\left[z_{k-1}, z_{k}\right] . Vijk=[xi1,xi]×[yj1,yj]×[zk1,zk].

M i j k , m i j k M_{i j k}, m_{i j k} Mijk,mijk 分别是 f ( x , y , z ) f(x, y, z) f(x,y,z) V i j k V_{i j k} Vijk上的上确界和下确界. 对任意

( ξ i , η j ) ∈ [ x i − 1 , x i ] × [ y j − 1 , y j ] , m i j k Δ z k ⩽ ∫ z k − 1 z k f ( ξ i , η j , z ) d z ⩽ M i j k Δ z k . \begin{array}{c} \left(\xi_{i}, \eta_{j}\right) \in\left[x_{i-1}, x_{i}\right] \times\left[y_{j-1}, y_{j}\right], \\ m_{i j k} \Delta z_{k} \leqslant \int_{z_{k-1}}^{z_{k}} f\left(\xi_{i}, \eta_{j}, z\right) \mathrm{d} z \leqslant M_{i j k} \Delta z_{k} . \end{array} (ξi,ηj)[xi1,xi]×[yj1,yj],mijkΔzkzk1zkf(ξi,ηj,z)dzMijkΔzk.

现按下标 k k k 相加, 有

∑ k ∫ i i − 1 z k f ( ξ i , η j , z ) d z = ∫ i h f ( ξ i , η j , z ) d z = g ( ξ i , η j ) \sum_{k} \int_{i_{i-1}}^{z_{k}} f\left(\xi_{i}, \eta_{j}, z\right) \mathrm{d} z=\int_{i}^{h} f\left(\xi_{i}, \eta_{j}, z\right) \mathrm{d} z=g\left(\xi_{i}, \eta_{j}\right) kii1zkf(ξi,ηj,z)dz=ihf(ξi,ηj,z)dz=g(ξi,ηj)

以及

∑ i , j , k m i j k Δ x i Δ y j Δ z k ⩽ ∑ i , j g ( ξ i , η j ) Δ x i Δ y j ⩽ ∑ i , j , k M i j k Δ x i Δ y j Δ z k . ( 2 ) \sum_{i, j, k} m_{i j k} \Delta x_{i} \Delta y_{j} \Delta z_{k} \leqslant \sum_{i, j} g\left(\xi_{i}, \eta_{j}\right) \Delta x_{i} \Delta y_{j} \leqslant \sum_{i, j, k} M_{i j k} \Delta x_{i} \Delta y_{j} \Delta z_{k} .\quad\quad(2) i,j,kmijkΔxiΔyjΔzki,jg(ξi,ηj)ΔxiΔyji,j,kMijkΔxiΔyjΔzk.(2)

上述不等式两边是分割 T T T 的下和与上和. 由 f ( x , y , z ) f(x, y, z) f(x,y,z) V V V 上可积, 当 ∥ T ∥ → 0 \|T\| \rightarrow 0 T0 时,下和与上和具有相同的极限, 所以由 (2) 式得 g ( x , y ) g(x, y) g(x,y) 关于 D D D 对应 T T T 的直线网格分割的下和与上和具有相同的极限. 由定理 21.4 有 g ( x , y ) g(x, y) g(x,y) D D D 上可积, 且

∬ D g ( x , y ) d x   d y = ∭ V f ( x , y , z ) d x   d y   d z . \iint_{D} g(x, y) \mathrm{d} x \mathrm{~d} y=\iiint_{V} f(x, y, z) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z . Dg(x,y)dx dy=Vf(x,y,z)dx dy dz.

推论

V = { ( x , y , z ) ∣ ( x , y ) ∈ D , z 1 ( x , y ) ⩽ z ⩽ z 2 ( x , y ) } ⊂ [ a , b ] × [ c , d ] × [ e V=\left\{(x, y, z) \mid(x, y) \in D, z_{1}(x, y) \leqslant z \leqslant z_{2}(x, y)\right\} \subset[a, b] \times[c, d] \times[e V=

  • 27
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值