若 x = φ ( t ) x=\varphi(t) x=φ(t) 具有反函数 t = φ − 1 ( x ) t=\varphi^{-1}(x) t=φ−1(x), 那么它与 y = ψ ( t ) y=\psi(t) y=ψ(t)构成一个复合函数
y = ψ ∘ φ − 1 ( x ) . y=\psi \circ \varphi^{-1}(x) \text {. } y=ψ∘φ−1(x).
这时只要函数 φ , ψ \varphi, \psi φ,ψ 可导, φ ′ ( t ) ≠ 0 \varphi^{\prime}(t) \neq 0 φ′(t)=0 (因而当 Δ x → 0 \Delta x \rightarrow 0 Δx→0 时, 也有 Δ t → 0 \Delta t \rightarrow 0 Δt→0 和 Δ y → 0 \Delta y \rightarrow 0 Δy→0 ), 就可由复合函数和反函数的求导法则得到
d y d x = d y d t ⋅ d t d x = d y d t / d x d t = ψ ′ ( t ) φ ′ ( t ) . ( 2 ) \cfrac{\mathrm{d} y}{\mathrm{~d} x}=\cfrac{\mathrm{d} y}{\mathrm{~d} t} \cdot \cfrac{\mathrm{d} t}{\mathrm{~d} x}=\cfrac{\mathrm{d} y}{\mathrm{~d} t} / \cfrac{\mathrm{d} x}{\mathrm{~d} t}=\cfrac{\psi^{\prime}(t)}{\varphi^{\prime}(t)} .\quad\quad(2) dxdy= dtdy⋅ dxdt=<