数学分析(五)-导数和微分3-参变量函数的导数6:利用“复合函数”和“反函数”的求导法则求参变量函数的导数【dy/dx=dy/dt·dt/dx=(dy/dt)/(dx/dt)=ψ´(t)/φ´(t)】

本文介绍了如何利用复合函数和反函数的求导法则来求解参变量函数的导数。通过具体例子,如上半椭圆的参量方程和对数螺线,展示了如何计算由这些方程确定的函数的导数,并探讨了切线与向径夹角的正切表达式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

x = φ ( t ) x=\varphi(t) x=φ(t) 具有反函数 t = φ − 1 ( x ) t=\varphi^{-1}(x) t=φ1(x), 那么它与 y = ψ ( t ) y=\psi(t) y=ψ(t)构成一个复合函数

y = ψ ∘ φ − 1 ( x ) .  y=\psi \circ \varphi^{-1}(x) \text {. } y=ψφ1(x)
这时只要函数 φ , ψ \varphi, \psi φ,ψ 可导, φ ′ ( t ) ≠ 0 \varphi^{\prime}(t) \neq 0 φ(t)=0 (因而当 Δ x → 0 \Delta x \rightarrow 0 Δx0 时, 也有 Δ t → 0 \Delta t \rightarrow 0 Δt0 Δ y → 0 \Delta y \rightarrow 0 Δy0 ), 就可由复合函数反函数的求导法则得到

d y   d x = d y   d t ⋅ d t   d x = d y   d t / d x   d t = ψ ′ ( t ) φ ′ ( t ) . ( 2 ) \cfrac{\mathrm{d} y}{\mathrm{~d} x}=\cfrac{\mathrm{d} y}{\mathrm{~d} t} \cdot \cfrac{\mathrm{d} t}{\mathrm{~d} x}=\cfrac{\mathrm{d} y}{\mathrm{~d} t} / \cfrac{\mathrm{d} x}{\mathrm{~d} t}=\cfrac{\psi^{\prime}(t)}{\varphi^{\prime}(t)} .\quad\quad(2)  dxdy= dtdy dxdt=<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值