数学分析(九)-定积分5-2-定积分计算1-2:“定积分”与“不定积分”换元积分法区别【定积分一旦得到用新变量表示的原函数,不必作变量还原,只要用新积分限代人并求其差值即可;而不定积分需代入原变量】

定理 9.12 (定积分换元积分法)

若函数 f f f [ a , b ] [a, b] [a,b] 上连续, φ ′ \varphi^{\prime} φ [ α , β ] [\alpha, \beta] [α,β] 上可积, 且满足

φ ( α ) = a , φ ( β ) = b , φ ( [ α , β ] ) ⊆ [ a , b ] , \varphi(\alpha)=a, \quad \varphi(\beta)=b, \quad \varphi([\alpha, \beta]) \subseteq[a, b], φ(α)=a,φ(β)=b,φ([α,β])[a,b],

则有定积分换元公式:

∫ a b f ( x ) d x = ∫ a β f ( φ ( t ) ) φ ′ ( t ) d t . ( 9 ) \int_{a}^{b} f(x) \mathrm{d} x=\int_{a}^{\beta} f(\varphi(t)) \varphi^{\prime}(t) \mathrm{d} t .\quad\quad(9) abf(x)dx=aβf(φ(t))φ(t)dt.(9)


在用换元法计算定积分时,一旦得到了用新变量表示的原函数后,不必作变量还原,而只要用新的积分限代人并求其差值就可以了.

这就是定积分换元积分法与不定积分换元积分法的区别,这一区别的原因在于:

  • 不定积分所求的是被积函数的原函数,理应保留与原来相同的自变量;
  • 而定积分的计算结果是一个确定的数,如果 (9)式一边的定积分计算出来了,那么另一边的定积分自然也求得了.


如果在定理 9.12 的条件中只假定 f f f 为可积函数, 但还要求 φ \varphi φ是单调的, 那么 (9) 式仍然成立. (本节习题第 14 题.)

例 3
计算 ∫ 0 π 2 sin ⁡ t cos ⁡ 2 t   d t \int_{0}^{\cfrac{\pi}{2}} \sin t \cos ^{2} t \mathrm{~d} t 02πsintcos2t dt.


逆向使用公式 (9), 令 x = cos ⁡ t ,   d x = − sin ⁡ t   d t x=\cos t, \mathrm{~d} x=-\sin t \mathrm{~d} t x=cost, dx=sint dt, 当 t t t 由 0 变到 π 2 \cfrac{\pi}{2} 2π 时, x x x 由 1 减到 0 ,则有

∫ 0 π 2 sin ⁡ t cos ⁡ 2 t   d t = − ∫ 1 0 x 2   d x = ∫ 0 1 x 2   d x = 1 3 . \int_{0}^{\cfrac{\pi}{2}} \sin t \cos ^{2} t \mathrm{~d} t=-\int_{1}^{0} x^{2} \mathrm{~d} x=\int_{0}^{1} x^{2} \mathrm{~d} x=\cfrac{1}{3} . 02πsintcos2t dt=10x2 dx=01x2 dx=31.

例 4

计算 J = ∫ 0 1 ln ⁡ ( 1 + x ) 1 + x 2   d x J=\int_{0}^{1} \cfrac{\ln (1+x)}{1+x^{2}} \mathrm{~d} x J=011+x2ln(1+x) dx.


x = tan ⁡ t x=\tan t x=tant, 当 t t t 从 0 变到 π 4 \cfrac{\pi}{4} 4π 时, x x x 从 0 增到 1 .

于是由公式 (9) 及 d t = d x 1 + x 2 \mathrm{d} t=\cfrac{\mathrm{d} x}{1+x^{2}} dt=1+x2dx 得到

J = ∫ 0 π 4 ln ⁡ ( 1 + tan ⁡ t ) d t = ∫ 0 π 4 ln ⁡ cos ⁡ t + sin ⁡ t cos ⁡ t   d t = ∫ 0 π 4 ln ⁡ 2 cos ⁡ ( π 4 − t ) cos ⁡ t   d t = ∫ 0 π 4 ln ⁡ 2   d t + ∫ 0 π 4 ln ⁡ cos ⁡ ( π 4 − t ) d t − ∫ 0 π 4 ln ⁡ cos ⁡ t   d t . \begin{aligned} J & =\int_{0}^{\cfrac{\pi}{4}} \ln (1+\tan t) \mathrm{d} t=\int_{0}^{\cfrac{\pi}{4}} \ln \cfrac{\cos t+\sin t}{\cos t} \mathrm{~d} t \\ & =\int_{0}^{\cfrac{\pi}{4}} \ln \cfrac{\sqrt{2} \cos \left(\cfrac{\pi}{4}-t\right)}{\cos t} \mathrm{~d} t \\ & =\int_{0}^{\cfrac{\pi}{4}} \ln \sqrt{2} \mathrm{~d} t+\int_{0}^{\cfrac{\pi}{4}} \ln \cos \left(\cfrac{\pi}{4}-t\right) \mathrm{d} t-\int_{0}^{\cfrac{\pi}{4}} \ln \cos t \mathrm{~d} t . \end{aligned} J=04πln(1+tant)dt=04πlncostcost+sint dt=04πlncost2 cos(4πt) dt=04πln2  dt+04πlncos(4πt)dt04πlncost dt.

对第二个定积分作变换 u = π 4 − t u=\cfrac{\pi}{4}-t u=4πt, 有

∫ 0 π 4 ln ⁡ cos ⁡ ( π 4 − t ) d t = ∫ π 4 0 ln ⁡ cos ⁡ u ( − d u ) = ∫ 0 π 4 ln ⁡ cos ⁡ u   d u , \int_{0}^{\cfrac{\pi}{4}} \ln \cos \left(\cfrac{\pi}{4}-t\right) \mathrm{d} t=\int_{\cfrac{\pi}{4}}^{0} \ln \cos u(-\mathrm{d} u)=\int_{0}^{\cfrac{\pi}{4}} \ln \cos u \mathrm{~d} u, 04πlncos(4πt)dt=4π0lncosu(du)=04πlncosu du,

它与上面第三个定积分相消. 故得

J = ∫ 0 π 4 ln ⁡ 2   d t = π 8 ln ⁡ 2. J=\int_{0}^{\cfrac{\pi}{4}} \ln \sqrt{2} \mathrm{~d} t=\cfrac{\pi}{8} \ln 2 . J=04πln2  dt=8πln2.

事实上,例 4 中的被积函数的原函数虽然存在, 但难以用初等函数来表示, 因此无法直接使用牛顿一莱布尼茨公式. 可是像上面那样, 利用定积分的性质和换元公式 (9), 消去了其中无法求出原函数的部分, 最终得出这个定积分的值.

换元积分法还可用来证明一些特殊的积分性质,如本节习题中的第 5 , 6 , 7 5,6,7 5,6,7 等题.

  • 13
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值