定义 1
如果存在有限极限
lim ∣ T ∣ → 0 s T = s , \lim \limits_{|T| \rightarrow 0} s_{T}=s, ∣T∣→0limsT=s,
即任给 ε > 0 \varepsilon>0 ε>0, 恒存在 δ > 0 \delta>0 δ>0, 使得对 C C C 的任何分割 T T T, 只要 ∥ T ∥ < δ \|T\|<\delta ∥T∥<δ, 就有
∣ s τ − s ∣ < ε , \left|s_{\tau}-s\right|<\varepsilon \text {, } ∣sτ−s∣<ε,
则称曲线 C C C 是可求长的, 并把极限 s s s 定义为曲线 C C C 的弧长.
定理 10.1
设曲线 C C C 是一条没有自交点的非闭的平面曲线, 由参数方程
x = x ( t ) , y = y ( t ) , t ∈ [ α , β ] ( 1 ) x=x(t), \quad y=y(t), \quad t \in[\alpha, \beta] \quad\quad(1) x=x(t),y=y(t),t∈[α,β](1)
给出. 若 x ( t ) x(t) x(t) 与 y ( t ) y(t) y(t) 在 [ α , β ] [\boldsymbol{\alpha}, \boldsymbol{\beta}] [α,β]上连续可微, 则 C C C 是可求长的, 且弧长为
s = ∫ α β [ x ′ ( t ) ] 2 + [ y ′ ( t ) ] 2 d t . ( 2 ) s=\int_{\alpha}^{\beta} \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}} \mathrm{~d} t .\quad\quad(2) s