复变函数论1-2-复平面ℂ上的点集2-7:单连通区域【没有“洞”的区域,其特点:属于单连通区域的任何一条简单闭曲线,在内部可经过连续的变形而缩成一点】、多连通区域

本文介绍了复变函数论中的单连通区域概念,强调了单连通区域的特性,即任何简单闭曲线可以连续变形缩成一点,同时讨论了多连通区域的定义。举例说明了不同类型的复平面区域,如圆形区域、半平面、带形区域和圆环形区域,并解释了为何圆环形区域是非单连通的,是二连通的。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

例 1.19
z z z 平面上以原点为圆心, R R R 为半径的 (即圆形区域):

∣ z ∣ < R ,  |z|<R \text {, } z<R

以及 z z z 平面上以原点为圆心, R R R 为半径的闭圆 (即圆形闭域):

∣ z ∣ ⩽ R , |z| \leqslant R, zR,

例 1.20
z z z 平面上以实轴 Im ⁡ z = 0 \operatorname{Im} z=0 Imz=0 为边界的两个无界区域是

上半 z z z 平面 Im ⁡ z > 0 \operatorname{Im} z>0 Imz>0.
下半 z z z 平面 Im ⁡ z < 0 \operatorname{Im} z<0 Imz<0.

z z z 平面上以虚轴 Re ⁡ z = 0 \operatorname{Re} z=0 Rez=0 为边界的两个无界区域是

左半 z z z 平面 Re ⁡ z < 0 \operatorname{Re} z<0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值