复变函数论1-2-复平面ℂ上的点集2-6:若尔当定理【任一简单闭曲线C将z平面惟一地分成C(曲线本身)、I(C)(曲线内部)、E(C)(曲线外部)三个点集】【彼此不交、I有界、E无界】

若尔当定理阐述了任一简单闭曲线在复平面上将区域分为三个互不相交的部分:曲线本身、有界的内部和无界的外部。该定理在复变函数论中具有重要意义,尽管其证明涉及拓扑学。简单闭曲线的正负方向定义也提供了直观的理解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

定理 1.1 (若尔当定理)

任一简单闭曲线 C C C z z z 平面惟一地分成 C C C【曲线本身】, I ( C ) I(C ) I(C)【曲线内部】 及 E ( C )

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值