复变函数论2-解析函数2-初等解析函数2-复三角函数1-复数z的正/余弦函数2-2:性质2【在z平面上是解析的,且(sinz)′=cosz、{cosz}′=-sinz】

本文介绍了复数z的正弦函数sinz和余弦函数cosz的定义,它们在z平面上解析,并且满足(sinz)′=cosz,(cosz)′=-sinz的导数性质。
摘要由CSDN通过智能技术生成

e z = e x + i y = e x ( cos ⁡ y + i sin ⁡ y ) ( 2.11 ) \mathrm{e}^{z}=\mathrm{e}^{x+\mathrm{i} y}=\mathrm{e}^{x}(\cos y+\mathrm{i} \sin y) \quad\quad (2.11) ez=ex+iy=ex(cosy+isiny)(2.11)

定义 2.5

定义

sin ⁡ z = e i z − e − i z

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值