e z = e x + i y = e x ( cos y + i sin y ) ( 2.11 ) \mathrm{e}^{z}=\mathrm{e}^{x+\mathrm{i} y}=\mathrm{e}^{x}(\cos y+\mathrm{i} \sin y) \quad\quad (2.11) ez=ex+iy=ex(cosy+isiny)(2.11) 定义 2.5 定义 sin z = e i z − e − i z