复变函数论6-留数理论及其应用1-3-留数的求法4:设a为f(z)=φ(z)/ψ(z)的一阶极点,只要φ(z)、ψ(z)在点a解析,则Resf(z)=φ(a)/ψ′(a)

本文详细介绍了复变函数中留数的概念,通过定理5.4和6.5阐述了一阶极点的留数计算方法,并给出两个例子进行具体计算,包括利用洛朗展开式和直接分析函数零点和极点的关系来确定留数,从而应用留数定理求解积分问题。
摘要由CSDN通过智能技术生成

定理 5.4

如果函数 f ( z ) f(z) f(z) 以点 a a a 为孤立奇点, 则下列三条是等价的. 因此,它们中的任何一条都是 m m m 阶极点的特征.
(1) f ( z ) f(z) f(z) 在点 a a a 的主要部分为
c − m ( z − a ) m + ⋯ + c − 1 z − a ( c − m ≠ 0 ) . \cfrac{c_{-m}}{(z-a)^{m}}+\cdots+\cfrac{c_{-1}}{z-a} \quad\left(c_{-m} \neq 0\right) . (za)mcm++zac1(cm=0).
(2) f ( z ) f(z) f(z) 在点 a a a 的某去心邻域内能表示成
f ( z ) = λ ( z ) ( z − a ) m , f(z)=\cfrac{\lambda(z)}{(z-a)^{m}}, f(z)=(za)mλ(z),
其中 λ ( z ) \lambda(z) λ(z) 在点 a a a 的邻域内解析, 且 λ ( a ) ≠ 0 \lambda(a) \neq 0 λ(a)=0.
(3) g ( z ) = 1 f ( z ) g(z)=\cfrac{1}{f(z)} g(z)=f(z)1 以点 a a a m m m 阶零点(可去奇点要当作解析点看, 只要令 g ( a ) = 0 g(a)=0 g(a)=0 ).

(3)表明: f ( z ) f(z) f(z) 以点 a a a m m m 阶极点 ⇔ 1 f ( z ) \Leftrightarrow \cfrac{1}{f(z)} f(z)1 以点 a a a m m m 阶零点.

定义 6.1

设函数 f ( z ) f(z) f(z) 以有限点 a a a孤立奇点, 即 f ( z ) f(z) f(z) 在点 a a a的某去心邻域 0 < 0< 0< ∣ z − a ∣ < R |z-a|<R za<R 内解析,则称积分

1 2 π i ∫ Γ f ( z ) d z ( Γ : ∣ z − a ∣ = ρ , 0 < ρ < R ) \cfrac{1}{2 \pi \mathrm{i}} \int_{\Gamma} f(z) \mathrm{d} z \quad(\Gamma:|z-a|=\rho, 0<\rho<R) 2πi1Γf(z)dz(Γ:za=ρ,0<ρ<R)

f ( z ) f(z) f(z) 在点 a a a留数 (residue), 记为 Res ⁡ f ( z ) \operatorname{Res} f(z) Resf(z).

由柯西积分定理 3.10 知道, 当 0 < ρ < R 0<\rho<R 0<ρ<R 时, 留数的值与 ρ \rho ρ 无关,利用洛朗系数公式(5.5), 有

1 2 π i ∫ Γ f ( z ) d z = c − 1 , ( 6.1 ) \cfrac{1}{2 \pi \mathrm{i}} \int_{\Gamma} f(z) \mathrm{d} z=c_{-1}, \quad\quad(6.1) 2πi1

  • 14
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值