复变函数论6-留数理论及其应用3-辐角原理及其应用1:对数留数

留数理论的重要应用之一是计算积分

1 2 π i ∫ C f ′ ( z ) f ( z ) d z , \cfrac{1}{2 \pi \mathrm{i}} \int_{C} \cfrac{f^{\prime}(z)}{f(z)} \mathrm{d} z, 2πi1Cf(z)f(z)dz,

它称为 f ( z ) f(z) f(z)对数留数 (这个名称来源于 f ′ ( z ) f ( z ) = d d z [ ln ⁡ f ( z ) ] \cfrac{f^{\prime}(z)}{f(z)}=\cfrac{\mathrm{d}}{\mathrm{d} z}[\ln f(z)] f(z)f(z)=dzd[lnf(z)]), 由它推出的辐角原理提供了计算解析函数零点个数的一个有效方法. 特别是,可以借此研究在一个指定区域内多项式零点的个数问题.

显然, 函数 f ( z ) f(z) f(z) 的零点和奇点都可能是 f ′ ( z ) f ( z ) \cfrac{f^{\prime}(z)}{f(z)} f(z)f(z)的奇点.

引理 6.4

(1) 设 a a a f ( z ) f(z) f(z) n n n 阶零点, 则 a a a 必为函数 f ′ ( z ) f ( z ) \cfrac{f^{\prime}(z)}{f(z)} f(z)f(z) 的一阶极点, 并且

Res ⁡ z = a [ f ′ ( z ) f ( z ) ] = n . \operatorname{Res}_{z=a}\left[\cfrac{f^{\prime}(z)}{f(z)}\right]=n . Resz=a[f(z)f(z)]=n.

(2) 设 b b b f ( z ) f(z) f(z) m m m 阶极点,则 b b b 必为函数 f ′ ( z ) f ( z ) \cfrac{f^{\prime}(z)}{f(z)} f(z)f(z) 的一阶极点, 并且

Res ⁡ z = b [ f ′ ( z ) f ( z ) ] = − m . \operatorname{Res}_{z=b}\left[\cfrac{f^{\prime}(z)}{f(z)}\right]=-m . Resz=b[

  • 14
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值