泛函分析基础1-度量空间和赋范线性空间8:赋范线性空间和巴拿赫空间

在泛函分析中,特别重要和有用的一类度量空间是赋范线性空间.在赋范线性空间中的元素可以相加或者数乘,元素之间不仅有距离,而且每个元素有类似于普通向量长度的称为范数的量.

定义1

X X X 是实(或复)的线性空间,如果对每个向量 x ∈ X , x \in X , xX, 有一个确定的实数,记为 ∥ x ∥ \| x \| x 与之对应,并且满足
1 ∘ ∥ x ∥ ⩾ 0 , 1 ^ { \circ } \| x \| \geqslant 0 , 1x0, ∥ x ∥ = 0 \| x \| = 0 x=0 等价于 x = 0 ; x = 0 ; x=0;
2 ∘ ∥ α x ∥ = ∣ α ∣ ∥ x ∥ 2 ^ { \circ } \| \alpha x \| = | \alpha | \| x \| 2αx=α∣∥x 其中 α \alpha α为任意实(复)数;
3 ∘ ∥ x + y ∥ ⩽ ∥ x ∥ + ∥ y ∥ , x , y ∈ X , 3 ^ { \circ } \| x + y \| \leqslant \| x \| + \| y \| , x , y \in X , 3x+yx+y,x,yX,

则称 ∥ x ∥ \| x \| x 为 向量 x x x 的范数,称 X X X 按 范数 ∥ ⋅ ∥ \| \cdot \| 为赋范线性空间,

{ x n } \left\{ x _ { n } \right\} { xn} X X X 中 点列,如果存在 x ∈ X , x \in X , xX, 使 ∥ x n − x ∥ → 0 ( n → ∞ ) , \left\| x _ { n } - x \right\| \rightarrow 0 ( n \rightarrow \infty ) , xnx0(n),则称 { x n } \left\{ x _ { n } \right\} { xn} 依范数收敛于 x , x , x, 记为 x n → x ( n → ∞ ) x _ { n } \rightarrow x ( n \rightarrow \infty ) xnx(n) lim ⁡ n → ∞ x n = x . \lim _ { n \rightarrow \infty } x _ { n } = x . limnxn=x.

如果令

d ( x , y ) = ∥ x − y ∥ ( x , y ∈ X ) , d ( x , y ) = \| x - y \| \quad ( x , y \in X ) , d(x,y)=xy(x,yX),

容易验证 d d d X X X 上的距离,且 { x n } \left\{ x _ { n } \right\} { xn} 依范数收敛于 x x x 等价于 { x n } \left\{ x _ { n } \right\} { xn} 按 距离 d d d 收 敛于 x . x . x. d d d为由范数 ∥ ⋅ ∥ \| \cdot \| 导出的距离.所以赋范线性空间实际上是一种特殊的度量空间.如果 d d d是由 ∥ ⋅ ∥ \| \cdot \| 导出的距离,那么这种距离和线性运算之间有某种关系,即对任意数 α \alpha α 和向量 x , y ∈ X , x , y \in X , x,yX,

(a) d ( x − y , 0 ) = d ( x , y ) , d ( x - y , 0 ) = d ( x , y ) , d(xy,0)=d(x,y),
(b) d ( α x , 0 ) = ∣ α ∣ d ( x , 0 ) . d ( \alpha x , 0 ) = | \alpha | d ( x , 0 ) . d(αx,0)=αd(x,0). (1)

反之,如果 X X X 是 线性空间, d d d X X X 上 的距离,并且满足条件 ( a ) ( \mathrm { a } ) (a) 和(b),那么一定可以在 X X X 上定义范数 ∥ ⋅ ∥ , \| \cdot \| , , 使 d d d 是由 ∥ ⋅ ∥ \| \cdot \| 所导出的距离.事实上,令 ∥ x ∥ = d ( x , 0 ) , \| x \| = d ( x , 0 ) , x=d(x,0), 由条件 ( a ) , ( b ) , ( \mathrm { a } ) , ( \mathrm { b } ) , (a),(b), 不难证明这样定义的 ∥ ⋅ ∥ \| \cdot \| 是范数,且 d ( x , y ) = ∥ x − y ∥ . d ( x , y ) = \| x - y \| . d(x,y)=xy∥. 条件 ( a ) , ( b ) ( \mathrm { a } ) , ( \mathrm { b } ) (a),(b) 反映了空间的度量结构和线性结构之间具有某种协调性.

我们可以证明 ∥ x ∥ \| x \| x x x x 的连续函数.事实上,对于任意 x , y ∈ X , x , y \in X , x,yX, 由范数条件 2 ∘ 2 ^ { \circ } 2 3 ∘ , 3 ^ { \circ } , 3, 不难证明成立不等式

∣ ∥ y ∥ − ∥ x ∥ ∣ ⩽ ∥ y − x ∥ , ( 2 ) | \| y \| - \| x \| | \leqslant \| y - x \| , \quad\quad(2) ∣∥yx∥∣yx,(2)

所以当 ∥ x n − x ∥ → 0 ( n → ∞ ) \left\| x _ { n } - x \right\| \rightarrow 0 ( n \rightarrow \infty ) xnx0(n)时, ∥ x n ∥ → ∥ x ∥ ( n → ∞ ) . \left\| x _ { n } \right\| \rightarrow \| x \| ( n \rightarrow \infty ) . xnx(n).

完备的赋范线性空间称为巴拿赫空间.下面举一些今后常用的赋范线性空间的例子。

例1
欧氏空间 R n , \mathbf { R } ^ { n } , Rn, 对每个 x = ( ξ 1 , ξ 2 , ⋯   , ξ n ) ∈ R n , x = \left( \xi _ { 1 } , \xi _ { 2 } , \cdots , \xi _ { n } \right) \in \mathbf { R } ^ { n } , x=(ξ1,ξ2,,ξn)Rn,定义

∥ x ∥ = ∣ ξ 1 ∣ 2 + ∣ ξ 2 ∣ 2 + ⋯ + ∣ ξ n ∣ 2 . ( 3 ) \| x \| = \sqrt { \left| \xi _ { 1 } \right| ^ { 2 } + \left| \xi _ { 2 } \right| ^ { 2 } + \cdots + \left| \xi _ { n } \right| ^ { 2 } } . \quad\quad(3) x=ξ12+ξ22++ξn2 .(3)

如果令 d ( x , y ) = ∥ x − y ∥ = ∣ ξ 1 − η 1 ∣ 2 + ∣ ξ 2 − η 2 ∣ 2 + ⋯ + ∣ ξ n − η n ∣ 2 , y = ( η 1 , η 2 , ⋯   , η n ) ∈ R n d(x,y) = \| x - y \| = \sqrt { \left| \xi _ { 1 } - \eta _ { 1 } \right| ^ { 2 } + \left| \xi _ { 2 } - \eta _ { 2 } \right| ^ { 2 } + \cdots + \left| \xi _ { n } - \eta _ { n } \right| ^ { 2 } } , y = \left( \eta _ { 1 } , \eta _ { 2 } , \cdots , \eta _ { n } \right) \in \mathbf { R } ^ { n } d(x,y)=xy=ξ1η12+ξ2η22++ξnηn2 ,y=(η1,η2,,ηn)Rn d d d 即为 R n \mathbf { R } ^ { n } Rn中欧几里得距离,且满足(1)中条件 ( a ) ( a ) (a) ( b ) , ( b ) , (b), 由此可知 ∥ ⋅ ∥ \| \cdot \| R n \mathbf { R } ^ { n } Rn 中范数.又因 R n \mathbf { R } ^ { n } Rn 完备,故 R n \mathbf { R } ^ { n } Rn 按(3)式中范数成巴拿赫空间、

例2
空间 C [ a , b ] , C [ a , b ] , C[a,b], 对每个 x ∈ C [ a , b ] , x \in C [ a , b ] , xC[a,b], 定义

∥ x ∥ = max ⁡ a ⩽ t ⩽ b ∣ x ( t ) ∣ . ( 4 ) \| x \| = \max _ { a \leqslant t \leqslant b } | x ( t ) | . \quad\quad (4) x=atbmaxx(t)∣.(4)

容易证明 C [ a , b ] C [ a , b ] C[a,b] 按(4)式中范数成为巴拿赫空间、

例3
空间 l ∗ , l ^ { * } , l, 对每个 x = ( ξ 1 , ξ 2 , ⋯   ) ∈ l n , x = \left( \xi _ { 1 } , \xi _ { 2 } , \cdots \right) \in l ^ { n } , x=(ξ1,ξ2,)ln,定义

∥ x ∥ = sup ⁡ j ∣ ξ j ∣ . ( 5 ) \| x \| = \sup _ { j } \left| \xi _ { j } \right| .\quad\quad(5) x=jsupξj.(5)

不难验证 l ∗ l ^ { * } l 按(5)式中范数成为巴拿赫空间

下面介绍两个重要的巴拿赫空间、

例4
空间 L p [ a , b ] . L ^ { p } [ a , b ] . Lp[a,b].

f ( t ) f ( t ) f(t) [ a , b ] [ a , b ] [a,b] 上复值可测函数 p > 0 , p > 0 , p>0, 如果 ∣ f ( x ) ∣ p | f ( x ) | ^ { p } f(x)p [ a , b ] [ a , b ] [a,b] L L L 可积函数,则称 f ( t ) f ( t ) f(t) [ a , b ] [ a , b ] [a,b] p p p 方可积函数, [ a , b ] [ a , b ] [a,b] p p p方可积函数全体记为 L p [ a , b ] . L ^ { p } [ a , b ] . Lp[a,b]. p = 1 p = 1 p=1 时, L 1 [ a , b ] L ^ { 1 } [ a , b ] L1[a,b] 即为 [ a , b ] [ a , b ] [a,b] L L L 可积函数全体.在空间 L p [ a , b ] L ^ { p } [ a , b ] Lp[a,b] 中,我们把两个 a . e . a . e . a.e. 相等的函数视为 L p [ a , b ] L ^ { p } [ a , b ] Lp[a,b] 中同一个元素而不加以区别.设 f , g ∈ L p [ a , b ] , f , g \in L ^ { p } [ a , b ] , f,gLp[a,b], 因为

∣ ⁢ f ⁡ ( t ) + g ⁡ ( t ) ∣ p ⩽ ( 2 max ⁡ { ∣ ⁢ f ⁡ ( t ) ⁢ ∣ , ∣ ⁢ g ⁡ ( t ) ⁢ ∣ } ) p ⩽ 2 p ( ∣ ⁢ f ⁡ ( t ) ∣ p + ∣ ⁢ g ⁡ ( t ) ∣ p ) . ∣⁢f⁡\left(t\right) + g⁡\left(t\right)∣^{p}⩽\left(2\max \left\{∣⁢f⁡\left(t\right)⁢∣,∣⁢g⁡\left(t\right)⁢∣\right\}\right)^{p}⩽2^{p}\left(∣⁢f⁡\left(t\right)∣^{p} + ∣⁢g⁡\left(t\right)∣^{p}\right). f(t)+g(t)p(2max{ f(t),g(t)})p2p(f(t)p+g(t)p).

所以, ∣ f ( t ) + g ( t ) ∣ p | f ( t ) + g ( t ) | ^ { p } f(t)+g(t)p [ a , b ] [ a , b ] [a,b] L L L可积函数,即 f + g ∈ L p [ a , b ] . f + g \in L ^ { p } [ a , b ] . f+gLp[a,b]. 至于 L p [ a , b ] L ^ { p } [ a , b ] Lp[a,b] 关于数乘运算封闭是显见的.故 L p [ a , b ] L ^ { p } [ a , b ] Lp[a,b]按函数通常的加法及数乘运算成为线性空间对每个 f ∈ L p [ a , b ] , f \in L ^ { p } [ a , b ] , fLp[a,b], 定义

∥ f ∥ p = ( ∫ a b ∣ f ( t ) ∣ p   d t ) 1 p . ( 6 ) \| f \| _ { p } = \left( \int _ { a } ^ { b } | f ( t ) | ^ { p } \mathrm { ~ d } t \right) ^ { \frac { 1 } { p } } .\quad\quad(6) fp=(abf(t)p dt)p1.(6)

我们要证明当 p ⩾ 1 p \geqslant 1 p1 时, L p [ a , b ] L ^ { p } [ a , b ] Lp[a,b] ∥ ⋅ ∥ p \| \cdot \| _ { p } p 成为巴拿赫空间.为此,首先证明几个重要的不等式

引理1(赫尔德( Holder)不等式)

p > 1 , 1 p + 1 q = 1 , f ∈ L p [ a , b ] , g ∈ L q [ a , b ] , p > 1 , \frac { 1 } { p } + \frac { 1 } { q } = 1 , f \in L ^ { p } [ a , b ] , g \in L ^ { q } [ a , b ] , p>1,p1+q1=1,fLp[a,b],gLq[a,b],那么 f ( t ) g ( t ) f ( t ) g ( t ) f(t)g(t)

  • 3
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值