泛函分析基础10-巴拿赫空间中的基本定理4:纲定理和一致有界性定理

本文介绍了巴拿赫空间中的纲定理和一致有界性定理,这两个定理是泛函分析的重要基础。纲定理指出非空完备度量空间为第二纲集,而一致有界性定理表明在巴拿赫空间中,如果一族有界线性算子在每个点上都有界,那么它们一致有界。这些原理在解决经典分析问题中起到关键作用。
摘要由CSDN通过智能技术生成

这一节将给出巴拿赫和斯坦因豪斯( Steinhaus)在1927年给出的一致有界性原理,它是巴拿赫空间理论的基石之一,许许多多古典的分析问题,经过抽象以后,都可以归结为这一原理,因而充分显示了泛函分析的重要作用.在证明一致有界原理之前,需要准备一个有力的工具------纲定理

定义1

M M M 是 度量空间 X X X 中的子集,如果 M M M 不 在 X X X 的任何半径不为零的开球中稠密,则称 M M M X X X 中的无处稠密集或疏朗集。

读者不难证明,在疏朗集的定义中把"开球"换成"闭球",结果是一样的.又可知 M M M X X X 中 疏朗集的充要条件为 M ˉ \bar { M } Mˉ 不 包含内点.事实上,若 M M M为疏朗集,而 M ˉ \bar { M } Mˉ 含 有内点 x 0 , x _ { 0 } , x0,则由内点定义,存在开球 U ( x 0 , ε ) , ε > 0 , U \left( x _ { 0 } , \varepsilon \right) , \varepsilon > 0 , U(x0,ε),ε>0, 使 U ( x 0 , ε ) ⊂ M ˉ , U \left( x _ { 0 } , \varepsilon \right) \subset \bar { M } , U(x0,ε)Mˉ, M M M U ( x 0 , ε ) U \left( x _ { 0 } , \varepsilon \right) U(x0,ε) 中稠密,这与 M M M 为 疏朗集矛盾;反之,若 M M M 不 含有内点,而 M M M 不 是 X X X中疏朗集,则由疏朗集定义,必有 X X X 中开球 U ( x 0 , ε ) , ε > 0 , U \left( x _ { 0 } , \varepsilon \right) , \varepsilon > 0 , U(x0,ε),ε>0, 使 M ~ ⊃ U ( x 0 , ε ) , \tilde { M } \supset U \left( x _ { 0 } , \varepsilon \right) , M~U(x0,ε), 这说明 x 0 x _ { 0 } x0 M ˉ \bar { M } Mˉ 的 内点,与 M ˉ \bar { M } Mˉ 中 不含内点的条件矛盾.

定义2

X X X 是 度量空间, M M M X X X 中 子集,若 M M M X X X中有限或可数个疏朗集的并集,则称 M M M 是第一纲集,不是第一纲集的集称为第二纲集。

我们有下述重要的贝尔( Baire)纲定理

定理1(贝尔纲定理)

X X X 是非空的完备度量空间,则 X X X 是 第二纲集

证明
我们用反证法,若 X X X 是第一纲集,则存在有限或可数个疏朗集 A k , A _ { k } , Ak, 使 X = X = X= ⋃ k A k , \bigcup _ { k } A _ { k } , kAk, 我们不妨讨论可数的情形,即 X = ⋃ k = 1 ∞ A k X = \bigcup _ { k = 1 } ^ { \infty } A _ { k } X=k=1Ak 的 情形.因 A 1 A _ { 1 } A1 X X X 中 疏朗集,则由前述 A ˉ 1 \bar { A } _ { 1 } Aˉ1不含有内点,因而 A ˉ 1 ≠ X , \bar { A } _ { 1 } \neq X , Aˉ1=X, A ˉ 1 c = X \ A ˉ 1 \bar { A } _ { 1 } ^ { c } = X \backslash \bar { A } _ { 1 } Aˉ1c=X\Aˉ1 X X X 中非空开集,因此在 A ˉ 1 c \bar { A } _ { 1 } ^ { c } Aˉ1c 中 至少有一点 p 1 p _ { 1 } p1 ε > 0 , \varepsilon > 0 , ε>0, 使 p 1 p _ { 1 } p1 ε \varepsilon ε 邻 域 U ( p 1 , ε ) ⊂ ( A ˉ 1 ) c , U \left( p _ { 1 } , \varepsilon \right) \subset \left( \bar { A } _ { 1 } \right) ^ { c } , U(p1,ε)(Aˉ1)c, ε 1 = ε 2 , \varepsilon _ { 1 } = \frac { \varepsilon } { 2 } , ε1=2ε, 则闭球

S 1 = { x : d ( x , p 1 ) ⩽ ε 1 ∣ ⊂ U ( p 1 , ε ) ⊂ ( A ˉ 1 ) c , S _ { 1 } = \left\{ x : d \left( x , p _ { 1 } \right) \leqslant \varepsilon _ { 1 } \right| \subset U \left( p _ { 1 } , \varepsilon \right) \subset \left( \bar { A } _ { 1 } \right) ^ { c } , S1={ x:d(x,p1)ε1U(p1,ε)(Aˉ1)c,

S 1 S _ { 1 } S1 A 1 A _ { 1 } A1 不 交又因 A 2 A _ { 2 } A2 也是疏朗集,故 A ˉ 2 \bar { A } _ { 2 } Aˉ2 也不含有内点,因此 A ˉ 2 \bar { A } _ { 2 } Aˉ2 不含有 U ( p 1 , ε 1 ) , U \left( p _ { 1 } , \varepsilon _ { 1 } \right) , U(p1,ε1),于是 ( A ˉ 2 ) c ∩ U ( p 1 , ε 1 ) = U ( p 1 , ε 1 ) \ A ˉ 2 \left( \bar { A } _ { 2 } \right) ^ { c } \cap U \left( p _ { 1 } , \varepsilon _ { 1 } \right) = U \left( p _ { 1 } , \varepsilon _ { 1 } \right) \backslash \bar { A } _ { 2 } (Aˉ2)cU(p1,ε1)=U(p1,ε1)\Aˉ2也是 X X X 中非空开集,因此在 ( A ˉ 2 ) κ ∩ U ( p 1 , ε 1 ) \left( \bar { A } _ { 2 } \right) ^ { \kappa } \cap U \left( p _ { 1 } , \varepsilon _ { 1 } \right) (Aˉ2)κU(p1,ε1)中至少有一点 p 2 p _ { 2 } p2 ε 2 ′ > 0 , \varepsilon _ { 2 } ^ { \prime } > 0 , ε2>0, 使 U ( p 2 , ε 2 ′ ) ⊂ ( A ˉ 2 ) c ∩ U ( p 1 , ε 1 ) , U \left( p _ { 2 } , \varepsilon _ { 2 } ^ { \prime } \right) \subset \left( \bar { A } _ { 2 } \right) ^ { c } \cap U \left( p _ { 1 } , \varepsilon _ { 1 } \right) , U(p2,ε2)(Aˉ2)cU(p1,ε1), ε 2 = ε 2 ′ 2 , \varepsilon _ { 2 } = \frac { \varepsilon _ { 2 } ^ { \prime } } { 2 } , ε2=2ε2,则闭球

S 2 = { x : d ( x , p 2 ) ⩽ ε 2 } ⊂ U ( p 2 , ε 2 ′ ) ⊂ ( A ˉ 2 ) c ∩ U ( p 1 , ε 1 ) , S _ { 2 } = \left\{ x : d \left( x , p _ { 2 } \right) \leqslant \varepsilon _ { 2 } \right\} \subset U \left( p _ { 2 } , \varepsilon _ { 2 } ^ { \prime } \right) \subset \left( \bar { A } _ { 2 } \right) ^ { c } \cap U \left( p _ { 1 } , \varepsilon _ { 1 } \right) , S2={ x:d(x,p2)ε2}U(p2,ε2)(Aˉ2)cU(p1,ε1),

S 2 S _ { 2 } S2 A 2 A _ { 2 } A2 不 交,并且 S 2 ⊂ U ( p 1 , ε 1 ) ⊂ S 1 , S _ { 2 } \subset U \left( p _ { 1 } , \varepsilon _ { 1 } \right) \subset S _ { 1 } , S2U(p1,ε1)S1, ε 2 = ε 2 ′ 2 ⩽ ε 1 2 = ε 2 2 . \varepsilon _ { 2 } = \frac { \varepsilon _ { 2 } ^ { \prime } } { 2 } \leqslant \frac { \varepsilon _ { 1 } } { 2 } = \frac { \varepsilon } { 2 ^ { 2 } } . ε2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值