实变函数论5-积分论5-黎曼积分和勒贝格积分4:定理3【设f是[a,∞)上的一个非负实函数,若对于任意的A>a,f在[a,A]上R可积且R反常积分收敛,则f在[a,∞)上L可积,且R积分=L积分】

定理3

f ( x ) f ( x ) f(x) [ a , ∞ ) [ a , \infty ) [a,) 上的一个非负实函数,若对于任意的 A > a , f ( x ) A > a , f ( x ) A>a,f(x) [ a , A ] [ a , A ] [a,A] R R R 可 积且 R R R 反常积分 ( R ) ∫ a ∞ f ( x ) d x ( R ) \int _ { a } ^ { \infty } f ( x ) \mathrm { d } x (R)af(x)dx 收敛,则 f ( x ) f ( x ) f(x) [ a , ∞ ) [ a , \infty ) [a,) L L L 可积且

( L ) ∫ ( a , ∞ ) f ( x ) d x = ( R ) ∫ a ∞ f ( x ) d x . ( L ) \int _ { ( a , \infty ) } f ( x ) \mathrm { d } x = ( R ) \int _ { a } ^ { \infty } f ( x ) \mathrm { d } x . (L)(a,)f(x)dx=(R)af(x)dx.

在这里插入图片描述

证明
由已知条件可知 f ( x ) f ( x ) f(x) [ a , ∞ ) [ a , \infty ) [a,) 上非负可测,故积分值 ( L ) ∫ ( a , x ) f ( x ) d x ( L ) \int _ { ( a , x ) } f ( x ) \mathrm { d } x (L)(a,x)f(x)dx 存在.任取数列 { A n } n = 1 ∞ \left\{ A _ { n } \right\} _ { n = 1 } ^ { \infty } { An}n=1 使得 a < A n → ∞ ( n → ∞ a < A _ { n } \rightarrow \infty ( n \rightarrow \infty a<An(n 时),令

f n ( x ) = { f ( x ) , 若 a

  • 6
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值