一、Squeezeformer 与 Conformer 对比分析
1. 核心设计目标
- Conformer(2020): 结合 Transformer 的全局注意力与 CNN 的局部特征,通过 Macaron-FFN + MHSA + CNN 模块堆叠,实现语音序列的全局-局部联合建模。
- Squeezeformer(2022): 在 Conformer 基础上优化计算效率,引入 时序 U-Net 结构 和 模块简化设计,减少冗余计算,提升推理速度。
2. 架构改进对比
模块 | Conformer | Squeezeformer | 改进意义 |
---|---|---|---|
时序处理 | 固定 4 倍下采样(10ms → 40ms) | 时序 U-Net:中间层下采样(8 倍 |