在线绘制GO、Pathway富集结果弦图

本文介绍如何使用在线工具绘制生物医学研究中常用的GO富集分析弦图,包括准备工作、示例数据下载、数据格式调整、参数设置及最终图表导出。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

富集分析是生物医学论文中非常常见的一类分析,例如GO富集分析,Pathway富集分析等。其结果一般包括以下几个要素:1,名字(GO term或者KEGG description);2,该名字中包含的基因;3,该名字中包含的基因的P值等。常见的绘图包括:气泡图,条形图。今天我们利用GOplot R包,来绘制一个弦图(chord plot)。

弦图简介:下面这个圆形的、错综复杂的图就是弦图,属于圈图的一种,在高大上的生物医学类文章中会经常见到。弦图可以展示多个对象间的关系。例如这里就展示了5个不同GO term(右侧)里包含的基因,及它们的倍数变化(左侧)。本质上讲,弦图是一种网络图,想象一下,如果把外侧的矩形都换成点,中间的带换成连线,就是一个圆形布局的网络图。


3cbde73af4dd73699e475f58cc579ef3.jpeg


          1,打开绘图页面

首先,使用浏览器(推荐chrome或者edge)打开弦图绘制页面。左侧为常见作图导航,中间为数据输入框和可选参数,右侧为描述和结果示例。也可以在主页搜索框中搜索chord,找到绘图页面。

https://www.bioinformatics.com.cn/plot_basic_GOplot_chord_plot_085


995f6dc39463590205d2a9b61b373171.jpeg

1.可视化绘图页面


2,示例数据

点击右侧“示例数据”链接下载excel格式的示例数据。

8b9fb1db55b84bfea943eb49fb89f0c9.jpeg

2. 输入数据示例


示例数据(仅供参考)包括3块:

第1块(第一列)是基因名

第2块(第二列到倒数第二列)是基因在每个GO term中的从属关系,0表示不再这个GO term里,1表示在这个GO term里。

第3块(最后一列)是基因对应的倍数变化 (可选,你的数据中没有这个信息的话,就不要这一列),名字必需是logFC(大小写敏感)。

注意:需要参考示例数据,将自己的数据在excel中整理成示例数据的样式。

我们还提供了格式转换页面,可以将任何富集结果转成GO chord输入形式

https://www.bioinformatics.com.cn/GO_chord_data_format_convert_t002

输入是metascape的富集结果,第一列是名字,第二列是基因,以|分割。拷贝你的富集结果,然后输入分隔符就可以转化成绘图数据了(见图2示例)


ff888ac4e30903e3affe5ed4819423f3.jpeg

3. 富集结果转化辅助页面


3,粘贴示例数据

直接复制示例数据中的A-G列数据,然后粘贴到输入框。

注意:不是拷贝excel文件,是拷贝excel文件里边的数据。另外粘贴到输入框后,格式乱了没关系,只要在excel中是整齐的就行。并且数据矩阵中不能有空的单元格,中文字符等。

3f802f5dcfa567cf98446b2ceb5493cd.jpeg

4. 必需输入


4,修改参数,并提交

我们设置了图片尺寸,文字大小,排序,字体等参数,基本能满足日常绘图使用。如需更高级的定制,请联系我们。

5adc2122ff8853db695a9624fff811a6.jpeg

5. 节点、文字、颜色等可调参数


5,提交出图

粘贴好输入数据,调整好参数(或者全部默认)后,点击提交按钮,约5秒后,会在页面右侧出现预览图。我们提供了4种图片格式供下载使用,两种矢量图(pdf,svg)和两种标量图(600 dpi tiff和300 dpi png)。

243a9e7183b9f343075da827cf645f73.jpeg

6.预览与下载


点评:

1,由于该图利用弦来表示关联,因此条目不能过多,推荐6个以内的GO或者KEGG条目,基因50个以内。

2,由于GO term有时候非常长,导致该图经常有截断,因此可以先利用缩写来代替,或者先设置非常小的字体,然后使用AI或者inkscape调整文字位置及大小。

3,由于GO term跟圈图比例不是固定的,因此出的图并非完全正圆,若有强迫症,可以使用windows自带的“截图和草图”-“量角器”进行确证并调整图片长宽。

没有预览就是没有出图,这时请参考示例数据,检查自己输入数据的格式。

遇到文字截断,需要修改字体、调整字体大小等,使用scape软件


微生信助力发文章,谷歌引用590+,知网引用450+


### Wiki Pathways 富集分析简介 Wiki Pathways 是一个社区维护的开放平台,旨在收集、发布和共享生物通路信息。该平台允许研究人员创建、编辑和注释路径,这些路径可以用于多种类型的富集分析。 #### 组织结构与特点 Wiki Pathways 提供了一个动态更新的知识库,其中包含了来自不同物种的各种生物通路数据[^1]。相比于静态数据库如KEGG,Wiki Pathways 更加灵活多变,因为它依赖于全球科研人员的合作贡献,能够及时反映最新的研究成果和技术进展。 #### 应用场景 在生物信息学领域中,Wiki Pathways 主要应用于以下几个方面: - **基因表达数据分析**:通过对差异表达基因列表进行映射到已知通路上来进行功能解释; - **代谢网络建模**:利用其丰富的代谢反应记录帮助构建更精确的模型; - **药物靶点预测**:基于疾病特异性通路识别可能成为治疗目标的关键节点; 对于希望开展富集分析的研究者来说,使用 Wiki Pathways 可以为理解复杂的生命现象提供更多维度的支持。 #### 实施方法 为了实现有效的 Wiki Pathways 富集分析,通常遵循以下流程: 1. 获取感兴趣的基因集合(例如,通过微阵列实验得到的不同条件下上调或下调的基因)。 2. 将此基因列表上传至支持 Wiki Pathways 数据源的应用工具(比如 ClusterProfiler R包)。 3. 执行统计测试以评估给定基因集中成员是否倾向于出现在某些特定通路上,并计算相应的 p-value 和 FDR (False Discovery Rate) 来衡量显著性程度。 4. 解读结果表,找出那些具有统计意义且生物学上合理的通路变化模式。 ```r library(clusterProfiler) data(gene_list) enrich_result <- enrichPathway(gene = gene_list, organism = "hsapiens", pvalueCutoff = 0.05, qvalueCutoff = 0.2) dotplot(enrich_result) ``` 上述代码展示了如何借助 `ClusterProfiler` 包完成一次基本的人类样本的 Wiki Pathways 富集分析操作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值