Pytorch nn.Module模块详解

torch.nn是专门为神经网络设计的模块化接口. nn构建于autograd之上,可以用来定义和运行神经网络。
nn.Module是nn中十分重要的类,包含网络各层的定义及forward方法

如何定义自己的网络:

  1. 需要继承nn.Module类,并实现forward方法。继承nn.Module类之后,在构造函数中要调用Module的构造函数, super(Linear, self).init()
  2. 一般把网络中具有可学习参数的层放在构造函数__init__()中。
  3. 不具有可学习参数的层(如ReLU)可放在构造函数中,也可不放在构造函数中(而在forward中使用nn.functional来代替)。可学习参数放在构造函数中,并且通过nn.Parameter()使参数以parameters(一种tensor,默认是自动求导)的形式存在Module中,并且通过parameters()或者named_parameters()以迭代器的方式返回可学习参数。
  4. 只要在nn.Module中定义了forward函数,backward函数就会被自动实现(利用Autograd)。而且一般不是显式的调用forward(layer.forward), 而是layer(input), 会自执行forward().
  5. 在forward中可以使用任何Variable支持的函数,毕竟在整个pytorch构建的图中,是Varible在流动。还可以使用if, for, print, log等python语法。

值得注意的是:
Pytorch基于nn.Module构建的模型中,只支持mini-batch的Variable输入方式。比如,只有一张输入图片,也需要变成NxCxHxW的形式:

input_image = torch.FloatTensor(1, 28, 28)
input_image = Variable(input_image)
input_image = input_image.unsqueeze(0)     # 1 x 1 x 28 x 28

如何把nn的层连接起来

我们发现每一层的输出作为下一层的输入,这种前馈nn可以不用每一层都重复的写forward()函数,通过Sequential()和ModuleList(),可以自动实现forward。这两个函数都是特殊module, 包含子module。ModuleList可以当成list用,但是不能直接传入输入。

Sequential构造方法
net1 = nn.Sequential()
net1.add("conv", nn.Conv2d(3, 3, 5))
net1.add("batchnorm", nn.BatchNorm2d(3))
访问方式: net1.conv(input)
net2 = nn.Sequential(nn.Conv2d(3, 3, 5), nn.BatchNorm2d(3))
访问方式: net2[0]
net3 = nn.Sequential(Order([("conv", nn.Conv2d(3, 3, 5)), ("batchnorm", nn.BatchNorm2d(3)), ()]))
访问方式: net3.conv(input)
ModuleList构造方法
modulelist=nn.ModuleList([ nn.Conv2d(3,3,6),nn.BatchNorm(3) ])

访问方式:
for model in modulelist:
input=modullist(input)

Reference:
https://www.cnblogs.com/zmmz/p/9830278.html
https://blog.csdn.net/e01528/article/details/84075090
https://blog.csdn.net/u012609509/article/details/81203436

`STFT` 是一个 PyTorch 模块,用于计算短时傅里叶变换(Short-Time Fourier Transform,STFT),是一种常用的信号处理技术。下面是这个模块的详细解释: ```python class STFT(torch.nn.Module): def __init__(self, filter_length=2048, hop_length=512, win_length=None, window='hann', center=True, pad_mode='reflect', freeze_parameters=True): super().__init__() self.filter_length = filter_length self.hop_length = hop_length self.center = center self.pad_mode = pad_mode if win_length is None: win_length = filter_length self.win_length = win_length self.window = get_window(window, win_length) # Create filter kernel fft_basis = np.fft.fft(np.eye(filter_length)) kernel = np.concatenate([np.real(fft_basis[:filter_length // 2 + 1, :]), np.imag(fft_basis[:filter_length // 2 + 1, :])], 0) self.register_buffer('kernel', torch.tensor(kernel, dtype=torch.float32)) # Freeze parameters if freeze_parameters: for name, param in self.named_parameters(): param.requires_grad = False def forward(self, waveform): assert (waveform.dim() == 1) # Pad waveform if self.center: waveform = nn.functional.pad(waveform.unsqueeze(0), (self.filter_length // 2, self.filter_length // 2), mode='constant', value=0) else: waveform = nn.functional.pad(waveform.unsqueeze(0), (self.filter_length - self.hop_length, 0), mode='constant', value=0) # Window waveform if waveform.shape[-1] < self.win_length: waveform = nn.functional.pad(waveform, (self.win_length - waveform.shape[-1], 0), mode='constant', value=0) waveform = waveform.squeeze(0) if self.window.device != waveform.device: self.window = self.window.to(waveform.device) windowed_waveform = waveform * self.window # Pad for linear convolution if self.center: windowed_waveform = nn.functional.pad(windowed_waveform, (self.filter_length // 2, self.filter_length // 2), mode='constant', value=0) else: windowed_waveform = nn.functional.pad(windowed_waveform, (self.filter_length - self.hop_length, 0), mode='constant', value=0) # Perform convolution fft = torch.fft.rfft(windowed_waveform.unsqueeze(0), dim=1) fft = torch.cat((fft.real, fft.imag), dim=1) output = torch.matmul(fft, self.kernel) # Remove redundant frequencies output = output[:, :self.filter_length // 2 + 1, :] return output ``` - `__init__` 方法:构造方法,用于初始化模块的各个参数。其中,`filter_length` 表示 STFT 的滤波器长度,`hop_length` 表示 STFT 的帧移(即相邻帧之间的采样点数),`win_length` 表示 STFT 的窗函数长度,`window` 是指定的窗函数类型(默认为汉宁窗),`center` 表示是否需要在信号两端填充 0 以保证 STFT 的中心位置与输入信号的中心位置对齐,`pad_mode` 是指定填充方式(默认为反射填充),`freeze_parameters` 表示是否需要冻结模块的参数。 - `forward` 方法:前向传播方法,用于计算输入信号的 STFT。其中,`waveform` 表示输入信号。首先,根据 `center` 和 `pad_mode` 对输入信号进行填充和窗函数处理,然后进行线性卷积,最后通过傅里叶变换计算 STFT。返回的 `output` 是一个张量,表示 STFT 系数。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值