g2o学习(附带SLAM十四讲第二版 第七章作业3d3d代码)

学习完成高博第二版的第七章了,多多少少对slam有些认知,但是对于图优化这个玄妙而又有用的东西理解不深,因此想在这里集中学习一下图优化和g2o的使用。

本文包含两部分内容:

  1. 图优化的理解。高博的参考链接:https://www.cnblogs.com/gaoxiang12/p/5244828.html
  2. 第七章ICP作业改写的,将pose和point均作为优化对象的g2o代码改写。

下面开始:

0. 预备知识:优化

优化问题三要素:目标函数、优化变量、优化约束

对于一个简单的优化问题: min𝑥𝐹(𝑥)

x为优化变量,F(x)为优化函数,此问题称为无约束优化问题。因为我们没有给出任何约束形式。而slam问题中大多为无约束优化。

当𝐹(𝑥)有一些特殊性质时,对应的优化问题也可以用一些特殊的解法。例如,𝐹(𝑥)为一个线性函数时,则为线性优化问题(不过线性优化问题通常在有约束情形下讨论)。反之则为非线性优化。对于无约束的非线性优化,如果我们知道它梯度的解析形式,就能直接求那些梯度为零的点,来解决这个优化:𝑑𝐹/𝑑𝑥=0

但是有时候F(x)的形式太复杂,导致无法写出解析的形式,因此使用迭代求解。

即:从一个初值𝑥0出发,不断地导致当前值附近的,能使目标函数下降的方式(反向梯度),然后沿着梯度方向走出一步,从而使得函数值下降一点。这样反复迭代,理论上对于任何函数,都能找到一个极小值点。

迭代的策略主要体现在如何选择下降方向,以及如何选择步长两个方面。主要有 Gauss-Newton (GN)法和 Levenberg-Marquardt (LM)法两种,它们的细节可以在高博的书上找到,也就是第六章非线性优化,如何求x的变化量δx的方法。

1. 图优化基础及顶点和边

讲优化问题用表达。

接下来理解到底是什么

图是由顶点(Vertex)和边(Edge)组成的结构,而图论则是研究图的理论。我们记一个图为𝐺={𝑉,𝐸},其中𝑉为顶点集,𝐸为边集。

顶点就是顶点,在问题中代表一个结点。

边是什么呢?一条边连接着若干个顶点,表示顶点之间的一种关系。边可以是有向的或是无向的,对应的图称为有向图或无向图。边也可以连接一个顶点(Unary Edge,一元边)、两个顶点(Binary Edge,二元边)或多个顶点(Hyper Edge,多元边)。最常见的边连接两个顶点,也就是接下来要将的BA方法解3d3d问题,将空间点和位姿两个优化变量作为顶点,这样就是一个二元边。当一个图中存在连接两个及以上顶点的边时,称这个图为超图(Hyper Graph)。而SLAM问题就可以表示成一个超图(在不引起歧义的情况下,后文直接以图指代超图)

怎么把SLAM问题表示成图呢?
 SLAM的核心是根据已有的观测数据,计算机器人的运动轨迹和地图。假设在时刻𝑘,机器人在位置𝑥𝑘处,用传感器进行了一次观测,得到了数据𝑧𝑘。传感器的观测方程为:
在这里插入图片描述
由于误差的存在,𝑧𝑘不可能精确地等于ℎ(𝑥𝑘),于是就有了误差:
在这里插入图片描述
那么,如果我们以𝑥𝑘为优化变量,以
在这里插入图片描述
为目标函数,就可以求得𝑥𝑘的估计值,进而得到我们想要的东西了。这实际上就是用优化来求解SLAM的思路。

以3d3d问题为例(3d3d比3d2d更容易理解),我们得到的是两组相机坐标系下的观测点(为左相机和右相机,并且运动方向是左到右)。我们知道这两组点是已经匹配好的,也就是在某种意义上,他们是同一个点,只不过在不同的坐标系下。但实际上二者并不严格重合,因为,有观测误差。那么我们可以将观测值Zk理解为左相机的三维观测点,观测方程理解为一种动作,也就是如何妄图获得观测值的动作。在这里,我们已经定义了左相机的三维点坐标为观测值,那么我想用右相机,做出某个动作,复现左相机的观测值。

这个动作是什么呢?那就是 TP‘。

我们用P’来表达三维点在右相机中的坐标,用P表达三维点在左相机中的坐标。TP‘就是我们妄图用右相机的三维点坐标去复现左相机的三维点坐标。这就是观测方程(理解为一种,想要复现观测值的动作)。具体示意图:
在这里插入图片描述
此观测方程包含两部分:

  1. 两个相机间pose的变换T
  2. 右3D点坐标P’

那么我们优化的目标就是:

P - TP’

那么如何讲他们表达成图呢?

在图中,以顶点表示优化变量,以边表示观测方程。由于边可以连接一个或多个顶点,所以我们把它的形式写成更广义的 𝑧𝑘=ℎ(𝑥𝑘1,𝑥𝑘2,…),以表示不限制顶点数量的意思。对于刚才提到的3d3d情境下的观测方程,顶点和边是什么形式呢?

先看顶点。

顶点就是优化变量。前面讲过,优化目标是P - TP’,那么我们来看看这中间有什么不知道。这个问题是在视觉里程计中引入的。我们在这个式子中要求的第一个要素就是T,即我们要获得两个相机间的位姿(其实是一个相机,之所以叫两个相机是因为从第一帧的位置,也就是左相机,变换到第二帧的位置,也就是右相机)。

因此顶点一,就是T,也就是相机的位姿。

如果我们讲右相机的三维观测点P‘也考虑为优化变量也是可以的。根据高博的书中所说:让整个问题更加“灵活”。

那么顶点二,就是P’

再看边。

前面说了,将观测方程表示为边。(或者将求误差的动作理解为边,或者将误差理解为边,我建议将动作理解为边)

在这个3d3d的问题中,P - TP’这个动作就可以理解为是边。那么在定义边的时候要注意几个问题:

1.P是边的要素,是观测值,也就是我们要传入的左相机原始三维点坐标数据。
2.既然要完成P - TP’的动作,因此有了P,还需要调用TP’,这就涉及到之前定义的两个顶点的调用。
3.雅克比矩阵的定义。因为你要告诉图,你的优化方向(也就是梯度),以便于实现对T和P’的更新。雅克比矩阵的事情以后再说。

至此定义完毕,简而言之,优化变量为顶点,求误差的动作为边。

那么在这个问题里,有几个匹配的三维点,就有几条边。

最终所有边和顶点,汇聚(summary)为一个优化问题,也就是将所有误差均考虑在内:

在这里插入图片描述
其中pi和pi’表示每个匹配好的左右3D点,对于每个误差取2范数(每一项的平方和)最终求和,构成了一个

最小二乘问题

那么图优化的目标函数,可以看做这个最小二乘问题

2. 图优化的进行

现在让我们来仔细看一看图优化是怎么做的。假设一个带有𝑛条边的图,其目标函数可以写成:

在这里插入图片描述
是不是和我们上面提及的最小二乘问题非常之像。

这里高博提供了几句话,对这个目标函数进行理解:

1.e(x, z)可以这么理解,z是观测值,xk是用展开的动作,实现对z的靠近;此外,Ω表示信息矩阵,在高博第二版的书中的第P124,表示我们对误差各分量的不一致性。。

2.信息矩阵 Ω实际上是协方差矩阵(在本例中为观测方程的协方差矩阵)的逆。可以看做是对误差的加权,最简单的是把Ω设成对角矩阵,这样只考虑观测值本身的误差,而不考虑相关性。

3.直接将e(x, z)写成e(x),以简洁表示。因为z是已知的。(观测值嘛)

于是总体优化问题变为𝑛条边加和的形式:

在这里插入图片描述
高博原文:
在这里插入图片描述
这是一个典型的3d2d问题。通过字里行间应该能分析出来,zk是观测值,是观测的右相机的二维像素,而对其进行观测,这个观测动作是什么呢?也就是要靠近这个右相机的二维像素的动作。也就是将左相机的三维点进行R t K等的变换,投影到右相机的二维像素平面。误差就是前后两个二位像素坐标的差值。总误差即为很多个观测点构成的最小二乘问题。

在这梳理一下如何在一个问题中梳理出来观测值和观测动作(或者是产生误差的动作)。

首先确定观测值,观测值是不进行优化的部分,是为了和之后动作产生的结果进行做差值的基本数据。3d2d问题中,我们首先选定了右相机的二维坐标为观测值。

接下来确定观测动作(或者是产生误差的动作)。也就是边。简而言之,就是我们如何用我们已有的东西(待优化的顶点,或者是顶点和已知数据的组合)去靠近之前的观测值。那么3d2d问题中,我们选定了右相机二维像素作为观测值,若想逼近观测值,那么就要用左相机的3D点,通过旋转平移和内参的关系,先转换到右相机坐标系,再转换到右相机像素坐标系,最终,与之前的观测值形成误差。

在这里插入图片描述

大致就是这么个过程。

此外,在定义边的时候,要定义雅克比矩阵。这里就不详细说了,雅克比矩阵如何求,就是误差e对不同的待优化变量求偏导数,这个在高博的书上都有很多,比如如何对位姿T的李代数δξ求导,如何对三维点P求导,这个在3d2d和3d3d的例程中都有详细的说明。

3. 流形

由于定义梯度的时候,待优化变量使用的加法δx,但是要注意,有可能待优化变量是没有加法定义的。(如T,即SE(3))

回想我们先前讲过的李代数知识。虽然李群 𝑆𝐸(3) 和 𝑆𝑂(3) 是没有加法的,但是它们对应的李代数 𝔰𝔢(3),𝔰𝔬(3) 有啊! 数学一点地说,我们可以求它们在正切空间里的流形上的梯度!如果读者觉得理解困难,我们就说,通过指数变换和对数变换,先把变换矩阵和旋转矩阵转换成李代数,在李代数上进行加法,然后再转换到原本的李群中。这样我们就完成了求导。

这也就是为什么我们在定义位姿pose顶点的时候,

class VertexPose : public g2o::BaseVertex<6, Sophus::SE3d>

6就代表了目标待优化状态变量Sophus::SE3d的流形是一个含有6个元素的东西。因为SE3的李代数就是6个元素的向量。
g2o中,这6个元素以double存储

4. 3d3d代码详解

见另外一片博客

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值