1. 故障诊断技术
2. 基于模型的方法
基于模型的方法通常是指基于定量模型的方法。
3. 基于数据的方法
基于数据的故障诊断方法旨在从数据中提取出隐含的有用信息进行故障诊断。根据诊断原理的不同可以将基于数据的方法分为基于统计分析的方法、基于信号处理的方法和基于人工智能的方法。
4. 基于统计分析的方法
基于统计分析的故障诊断方法通过对数据进行分析,提取统计特征量,然后判断特征量是否超过设定的阈值进行故障诊断。主成分分析是目前应用最为成熟的多元统计分析方法之一。
5. 基于信号处理的方法
基于信号处理的故障诊断方法的基本思想是受故障影响的测量信号与正常运行时的测量信号具有不同的特征,如果能够提取与故障相关的特征,即可判断出系统中发生了故障。基于信号处理的方法通常被用于检测传感器的故障。其主要原理是通过信号处理方法检测信号中的奇异点进行故障检测。
6. 人工智能方法
基于人工智能技术进行故障诊断的基本思想是从历史数据中学习系统的行为模式。基于人工智能方法进行故障诊断的主要研究思路可以大致分为两种:一种是基于模型近似的诊断思想,另一种是基于模式识别的诊断思想。
基于模型近似的诊断方法主要是从正常运行的历史数据中学习无故障系统的模型,作为故障检测的依据。例如用相对向量机学习历史运行数据的边界,然后生成用于故障检测的自适应阈值,
基于模式识别的故障诊断方法主要是使用历史数据训练分类器进行故障诊断。模式识别方法可以分为有监督学习算法和无监督训练算法。近年来,基于深度学习理论的人工智能方法得到了广泛的关注,最近已经有研究者将这些方法引入到航天器故障诊断领域。