调和级数相关证明

0. 调和级数定义

a , b , c a, b, c a,b,c 为调和级数中的三个连续的元素,试证明:

b + a b − a + b + c b − c = 2 \frac{b+a}{b-a}+\frac{b+c}{b-c}=2 bab+a+bcb+c=2

不妨令 a = 1 x , b = 1 x + d , c = 1 x + 2 d a=\frac1{x},b=\frac1{x+d},c=\frac1{x+2d} a=x1,b=x+d1,c=x+2d1,则有:

b + a b − a + b + c b − c = 1 x + 1 x + d 1 x − 1 x + d + 1 x + d + 1 x + 2 d 1 x + d − 1 x + 2 d = 2 \frac{b+a}{b-a}+\frac{b+c}{b-c}=\frac{\frac{1}{x}+\frac{1}{x+d}}{\frac{1}{x}-\frac{1}{x+d}}+\frac{\frac{1}{x+d}+\frac{1}{x+2d}}{\frac{1}{x+d}-\frac{1}{x+2d}}=2 bab+a+bcb+c=x1x+d1x1+x+d1+x+d1x+2d1x+d1+x+2d1=2

1. 发散性证明

1 + 1 2 + 1 3 + ⋯ + 1 n − 1 + 1 n ≈ log ⁡ ( n ) 1+\frac12+\frac13+\cdots+\frac1{n-1}+\frac1n\approx \log(n) 1+21+31++n11+n1log(n)

也算间接证明了调和级数的发散性。这里给出调和级数发散的略严格点的证明:

∑ n = 1 N 1 n = 1 + 1 2 + 1 3 + 1 4 + 1 5 + 1 6 + 1 7 + 1 8 + ⋯ = 1 + 1 2 + ( 1 3 + 1 4 ) + ( 1 5 + 1 6 + 1 7 + 1 8 ) + ( 1 9 + ⋯ + 1 16 ) + ⋯ + = 1 + 1 2 + 1 2 + 1 2 + ⋯ \begin{array}{ll} \sum_{n=1}^N\frac1n&=1+\frac12+\frac13+\frac14+\frac15+\frac16+\frac17+\frac18+\cdots\\ &=1+\frac12+\left(\frac13+\frac14\right)+\left(\frac15+\frac16+\frac17+\frac18\right)+\left(\frac19+\cdots+\frac1{16}\right)+\cdots+\\ &=1+\frac12+\frac12+\frac12+\cdots \end{array} n=1Nn1=1+21+31+41+51+61+71+81+=1+21+(31+41)+(51+61+71+81)+(91++161)++=1+21+21+21+

这样放缩似乎也不太严谨,当我再查找欧拉常数 γ \gamma γ 的相关内容时,又发现了一个证明:

lim ⁡ n → ∞ ∑ k = 1 n 1 k ≥ lim ⁡ n → ∞ ∑ k = 1 n ln ⁡ ( 1 + 1 k ) = ln ⁡ ( 1 + 1 ) + ln ⁡ ( 1 + 1 2 ) + ⋯ + ln ⁡ ( 1 + 1 n ) = ln ⁡ ( 2 ) + ln ⁡ ( 3 2 ) + ⋯ + ln ⁡ ( n n − 1 ) + ln ⁡ ( n + 1 n ) = ln ⁡ ( 2 ⋅ 3 2 ⋯ n n − 1 n + 1 n ) = ln ⁡ ( n + 1 ) \begin{array}{ll} \lim_{n\to\infty}\sum_{k=1}^n\frac1k\geq &\lim_{n\to \infty}\sum_{k=1}^n\ln(1+\frac1k)\\ &=\ln(1+1)+\ln(1+\frac12)+\cdots+\ln(1+\frac1n)\\&=\ln(2)+\ln(\frac32)+\cdots+\ln(\frac{n}{n-1})+\ln(\frac{n+1}n)\\ &=\ln(2\cdot\frac32\cdots\frac{n}{n-1}\frac{n+1}n)\\ &=\ln(n+1) \end{array} limnk=1nk1limnk=1nln(1+k1)=ln(1+1)+ln(1+21)++ln(1+n1)=ln(2)+ln(23)++ln(n1n)+ln(nn+1)=ln(223n1nnn+1)=ln(n+1)

x > − 1 x>-1 x>1 时, ln ⁡ ( 1 + x ) ≤ x \ln(1+x)\leq x ln(1+x)x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

五道口纳什

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值