对偶空间(dual linear space)

原创 2017年01月03日 22:07:10

1. 定义

V 为定义在数域 F 上的向量空间,定义 V 上的线性函数是从 VF 的映射:f:VF,且满足 x,yV,kF 有:f(x+y)=f(x)+f(y),f(ka)=kf(a)

现考虑 V 上所有线性函数(f:VF)的集合 V。对 f,gV,xV,kF,可以在 V 定义如下的标量乘法和加法(向量加法):

  • 标量乘法:g(kx)=kg(x)
  • 加法:(f+g)(x)=f(x)+g(x)(向量加法,是由定义出来的)

在上述意义下,可以证明 V 是域 F 上的向量空间,称为 V 的对偶空间。

最后,更准确的说,对偶空间里的元素是“线性泛函”(linear functional),这是一种特殊的线性映射。

2. 简单性质

  • covector:vectors in the dual space,对偶空间中的向量称为 covector(协向量)
    αV,vVα(v)R,covector 以 vector 为输入,以 scalar 为输出;

  • 从基的角度继续考察对偶空间,如果 V 表示一个有限维空间,则 dimV=dimV

    • 假定 V:{ei}i=1,,n(由基向量长成的线性空间),V={ei}i=1,,n,则有如下的定义:

    ei(ej)=δij={1,0,i=jotherwise

    对偶空间中的向量称为 covector,如性质一所说,covector 接受线性空间中的向量,输出一个标量;

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

线性代数(十五):对偶空间与矩阵的转置

矩阵的转置

简析Wolfe Dual (Wolfe对偶性原则)

note:对于这个过程的一个直观的理解就是利用直线族的包络,对于每个固定的x,都有一条对应的以lambda为参数的直线,那么所有的x实际上就是一个直线族,这个直线族在每个lambda截面上必定有极大和...

SVM算法的相关问题

1.为什么SVM要通过求解对偶问题来获得与之等价的原问题的最优解? 2.Lagrange对偶与Wolfe对偶的区别 3.对KKT条件的理解 4.支持向量的几何解释 5.对偶的理解...
  • shuzin
  • shuzin
  • 2015年10月15日 15:15
  • 246

优化问题中的对偶性理论

优化问题中的对偶性理论 Standard 本文讲的是优化问题中与对偶问题、对偶性理论相关的内容,包括对偶问题的最优解、弱对偶性、强对偶性、共轭函数、以及KKT条件等。 ...

SVM中原始问题与对偶问题的理解

1. 支持向量机的目的是什么? 对于用于分类的支持向量机来说,给定一个包含正例和反例(正样本点和负样本点)的样本集合,支持向量机的目的是寻找一个超平面来对样本进行分割,把样本中的正例和反例用超平...

(Dual learning)对偶学习——视频笔记

Dual Learning解决的问题: 带标签的训练数据少且高昂的成本,尽可能的利用无标签数据Dual Learning 思想 Dual Learning在NMT中的应用 1.算法思想 2....

林轩田--机器学习技法--SVM笔记2--对偶支持向量机(dual+SVM)

林轩田--机器学习技法--支持向量机2(对偶支持向量机 dual SVM)

机器学习技法总结(一):支持向量机(linear support vector machine,dual support vector machine)

第一阶段技法:large margin (the relationship between large marin and regularization), hard-SVM,soft-SVM,dua...

Linear Programming Dual

Linear Programming Dual p Time Limit: 1000MS   Memory Limit: 32768KB   64bi...
  • wwwzys
  • wwwzys
  • 2011年08月24日 21:13
  • 473
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:对偶空间(dual linear space)
举报原因:
原因补充:

(最多只允许输入30个字)