对偶空间(dual linear space)

1. 定义

V 为定义在数域 F 上的向量空间,定义 V 上的线性函数是从 V F 的映射:f:VF,且满足 x,yV,kF 有: f(x+y)=f(x)+f(y),f(ka)=kf(a)

现考虑 V 上所有线性函数(f:VF)的集合 V 。对 f,gV,xV,kF ,可以在 V 定义如下的标量乘法和加法(向量加法):

  • 标量乘法: g(kx)=kg(x)
  • 加法: (f+g)(x)=f(x)+g(x) (向量加法,是由定义出来的)

在上述意义下,可以证明 V 是域 F 上的向量空间,称为 V 的对偶空间。

最后,更准确的说,对偶空间里的元素是“线性泛函”(linear functional),这是一种特殊的线性映射。

2. 简单性质

  • covector:vectors in the dual space,对偶空间中的向量称为 covector(协向量)
    αV,vVα(v)R ,covector 以 vector 为输入,以 scalar 为输出;

  • 从基的角度继续考察对偶空间,如果 V 表示一个有限维空间,则 dimV=dimV

    • 假定 V:{ei}i=1,,n (由基向量长成的线性空间), V={ei}i=1,,n ,则有如下的定义:

    ei(ej)=δij={1,0,i=jotherwise

    对偶空间中的向量称为 covector,如性质一所说,covector 接受线性空间中的向量,输出一个标量;

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

五道口纳什

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值