LOAM中消除IMU重力影响解析

文章转载自: https://blog.csdn.net/weixin_44492854/article/details/109249662

代码介绍

在LOAM的处理中,IMU数据甫一进入系统第一步是对重力分量的去除。LOAM中对重力影响的去除有以下公式:

float accX = vec_imuData[pointer].accy - sin(imuRoll[pointer]) * cos(imuPitch[pointer]) * 9.81;
float accY = vec_imuData[pointer].accz - cos(imuRoll[pointer]) * cos(imuPitch[pointer]) * 9.81;
float accZ = vec_imuData[pointer].accx + sin(imuPitch[pointer]) * 9.81;

以上公式处理对初始IMU的数据进行了以下两个操作:

    1. 去除了重力的影响;
    2. 变换了坐标表示。

坐标系的定义:

  ROS坐标系: x轴向前,y轴向左,z轴向上的右手坐标系
  欧拉角坐标系: z轴向前,X轴向左,y轴向上的右手坐标系
  imu坐标系: x轴向前,y轴向左,z轴向上的右手坐标系
  velodyne lidar安装坐标系: x轴向前,y轴向左,z轴向上的右手坐标系
  scanRegistration会把两者通过交换坐标轴,都统一到z轴向前,x轴向左,y轴向上的欧拉角坐标系,这是J. Zhang的论文里面使用的坐标系

以下对两个方面逐个进行说明。

IMU数据去除重力

将该加速度按IMU在空间中的姿态将受重力影响的加速度分解到三个敏感轴方向上,之后在读数基础上减去该部分影响,即可得到去除重力加速度的三轴加速度。

在这里插入图片描述在这里插入图片描述

### 回答1: 要将IMU信息添加到LEGO-LOAM中,需要进行以下步骤: 1. 首先,需要在代码中添加IMU数据的读取和处理功能。可以使用ROS中的IMU消息类型来读取IMU数据,并将其转换为适合LEGO-LOAM使用的格式。 2. 接下来,需要将IMU数据与激光雷达数据进行同步。可以使用时间戳来将两者同步,确保它们在同一时刻被处理。 3. 最后,需要将IMU数据与激光雷达数据进行融合,以提高定位和建图的精度。可以使用卡尔曼滤波或扩展卡尔曼滤波等技术来实现融合。 总之,将IMU信息添加到LEGO-LOAM中需要进行一些代码修改和算法调整,以确保IMU数据能够与激光雷达数据有效地融合。 ### 回答2: LEGO-LOAM是一个基于LEGO Mindstorms EV3硬件平台和三维激光雷达(3D Lidar)的开源SLAM系统。在实际的应用场景中,通常需要加入IMU(惯性测量单元)信息来提高其定位精度和鲁棒性。那么,LEGO-LOAM如何加入IMU信息呢? 在LEGO-LOAM中,IMU信息是通过IMU传感器进行获取的。具体来说,IMU传感器能够测量设备的加速度和角速度信息,通过对这些信息进行积分可以获取设备的位置和姿态信息。因此,将IMU传感器的输出信息与3D Lidar的测量数据进行融合,便可以提高LEGO-LOAM系统的定位精度和鲁棒性。 在LEGO-LOAM中,可以通过以下步骤将IMU信息加入到系统中: 1.将IMU传感器与LEGO Mindstorms EV3设备相连接,通过EV3软件获取IMU传感器的输出数据。可以使用EV3DEV系统配合Python命令行工具对IMU传感器进行操作。 2.利用IMU传感器获取到设备的加速度和角速度信息,并进行积分得到设备的位置和姿态信息。 3.通过将IMU信息与3D Lidar测量数据进行融合,得到更可靠和精准的定位信息。 4.在代码实现中,可以运用卡尔曼滤波等算法进行IMU信息的融合和滤波,进一步提高系统的精度和稳定性。 总之,在LEGO-LOAM系统中加入IMU信息,能够显著提高系统的定位精度和鲁棒性,为实际的应用场景带来更多便利和价值。 ### 回答3: LEGO-LOAM是一种基于激光雷达的无人驾驶系统,它利用点云数据进行建图和定位。但是,对于具有运动状态的无人车辆而言,仅仅使用激光雷达并不能很好地实现建图和定位。因此,LEGO-LOAM需要结合IMU(惯性测量单元)的信息。 惯性测量单元(IMU)是一种能够测量物体姿态和运动状态的仪器。它通常包括加速度计和陀螺仪。加速度计可以测量物体的加速度,从而可以得到物体的姿态信息。而陀螺仪可以测量物体的角速度,从而可以得到物体的旋转信息。 在LEGO-LOAM中,可以通过将IMU的信息加入激光雷达数据中,使得无人车辆能够更准确地进行建图和定位。 具体来讲,首先需要读取IMU的数据,并将其转换为IMU坐标系下的加速度和角速度信息。然后,需要将IMU坐标系和激光雷达坐标系之间的关系进行校准,从而得到准确的坐标系转换矩阵。最后,将转换后的IMU信息与激光雷达数据进行融合,从而得到更加准确的点云数据,进而进行建图和定位。 总的来说,加入IMU信息可以提高LEGO-LOAM的定位精度和建图效果,使得无人车辆能够更加准确和稳定地进行自主导航和控制。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值