目录
1.摘要
这项工作提出了一个新的多目标版本的多元宇宙优化算法(MVO),称为多目标多元宇宙优化算法(MOMVO)。在多目标搜索空间中,采用与MVO相同的概念来收敛于最佳解决方案。为了保持和提高所获得的Pareto最优解的覆盖范围,采用了一个具有更新机制的存档。
2. Multi-objective multi-verse optimization algorithm (MOMVO)
2.1 多元宇宙优化算法(MVO)
2.2 多目标多元宇宙优化算法(MOMVO)
多目标多元宇宙优化算法首先将一个存档集成到该算法中,它用来存储迄今为止获得的最佳非支配解。MOMVO中的搜索机制与MVO非常相似,通过使用白洞、黑洞和虫洞来改进解决方案。为了从存档中选择解决方案以建立解决方案之间的隧道,我们采用领导者选择机制。在这种方法中,首先选择存档中每个解决方案的拥挤距离,并计算邻域中的解决方案数量作为覆盖或多样性的度量。MOMVO需要使用轮盘赌从存档中人口较少的区域选择解决方案:
P
i
=
c
/
N
i
P_i=c/N_i
Pi=c/Ni
存档能够容纳有限数量的非支配解决方案,在优化过程中可能会变满。因此,应该有一个机制从存档中移除不需要的解决方案。不需要的解决方案是指那些有许多邻近解决方案的解决方案,因此我们要求存档丢弃这类解决方案:
P
i
′
=
N
i
/
c
P_i^{\prime}=N_i/c
Pi′=Ni/c
MOMVO 算法和 NSGA-II 的主要区别在于存档。在 NSGA-II 中,解决方案根据它们的支配层次进行排序和选择,虽然这种机制促进了探索,但可能会损害好的非支配解决方案。使用存档的主要动机是在优化过程中减少损害非支配解决方案的概率,存档维持了最佳的非支配解决方案。由于我们要求 MOMVO 中的解决方案通过使用几种操作符突然更新它们的变量,理论上,这种算法提供了比 NSGA-II 算法更优越的探索和收敛性。
3.定量和定性指标
为了比较上述案例研究中的算法,作者采用了定量和定性指标。为了量化收敛性,论文使用了Generational Distance(GD)和Inverted Generational Distance(IGD)。为了量化获得的 Pareto 最优解的分布(覆盖率),采用了Spacing(SP)指标和Maximum Spread(M)。
G
D
=
∑
i
=
1
n
o
d
i
2
n
o
GD=\frac{\sqrt{\sum_{i=1}^{no}d_i^2}}{no}
GD=no∑i=1nodi2
其中,no 是获得的 Pareto 最优解的数量,di表示获得的第 i 个 Pareto 最优解与参考集中最接近的真实 Pareto 最优解之间的欧氏距离。
I G D = ∑ i = 1 n t ( d i ′ ) 2 n t IGD=\frac{\sqrt{\sum_{i=1}^{nt}\left(d_i'\right)^2}}{nt} IGD=nt∑i=1nt(di′)2
其中,nt 是真实 Pareto 最优解的数量,di表示第 i 个真实 Pareto 最优解与参考集中获得的最接近的 Pareto 最优解之间的欧氏距离。
S
P
=
Δ
1
n
o
−
1
∑
i
=
1
n
o
(
d
ˉ
−
d
i
)
2
SP\stackrel{\Delta}{=}\sqrt{\frac{1}{no-1}\sum_{i=1}^{no}\left(\bar{d}-d_i\right)^2}
SP=Δno−11i=1∑no(dˉ−di)2
其中,no是获得的 Pareto 最优解的数量,
d
i
=
min
j
(
∣
f
1
(
x
^
)
−
f
1
(
x
j
)
∣
+
∣
f
2
(
x
^
)
−
f
2
(
x
j
)
∣
)
d_i=\min_j(|f_1(\hat x)-f_1(x_j)|+|f_2(\hat x)-f_2(x_j)|)
di=minj(∣f1(x^)−f1(xj)∣+∣f2(x^)−f2(xj)∣)。
M
=
∑
i
=
1
o
max
(
d
(
a
i
,
b
i
)
)
M=\sqrt{\sum_{i=1}^o\max{(d(a_i,b_i))}}
M=i=1∑omax(d(ai,bi))
其中o是目标的数量,d() 计算欧氏距离。
PS:总结一下,GD和IGD用来衡量算法得到的非支配解集与真实Pareto前沿之间的平均距离,越小越好;SP用来衡量解集中解的分布均匀性,越小越好;M用来衡量解集在目标空间中的扩展范围,越大越好。
4.结果展示
5.参考文献
[1] Mirjalili S, Jangir P, Mirjalili S Z, et al. Optimization of problems with multiple objectives using the multi-verse optimization algorithm[J]. Knowledge-Based Systems, 2017, 134: 50-71.