铁基催化,登顶Nature Catalysis

研究背景 

铃木偶联反应(Suzuki cross-coupling reaction)是一种高效的合成生物芳香族化合物的方法,因其在制药和农业化学等领域的广泛应用而受到重视。例如,该反应在合成诸如抗高血压药物(如缬沙坦)和广谱杀菌剂(如博斯卡利德)等关键中间体中发挥着重要作用。然而,传统上使用的钯基催化剂存在成本高、毒性大及可持续性差等问题,因此,寻找更经济和环保的替代催化剂已成为研究的热点之一。 

近年来,铁基催化剂因其廉价、易得且相对无毒的特性引起了广泛关注。尽管铁催化的铃木偶联反应在使用烷基基电亲体方面已有较为充分的研究,但在芳基氯底物的二芳基偶联反应中仍存在技术瓶颈。现有的研究表明,尽管在极高的反应压力下有相关反应被报道,但在常规合成条件下,铁催化的二芳基偶联反应仍未实现。因此,研究者们需要克服二聚化、自偶联等竞争反应的挑战,以实现铁催化的铃木反应。 

成果简介 

为了解决这一问题,英国布里斯托大学(University of Bristol)Benjamin J. S. Rowsell,Robin B. Bedford等在Nature Catalysis期刊上发表了题为“The iron-catalysed Suzuki coupling of aryl chlorides”的最新论文。研究者们通过使用具有N-杂环卡宾配体的铁催化剂,成功实现了简单芳基氯与芳基硼酸酯的铃木二芳基偶联反应。相关的机理研究显示,反应的关键步骤是转金属化,而不是芳基氯的活化,这一发现为铁催化的碳-碳键形成转化的进一步研究提供了重要基础。
f79d15aa3d396314461916ae9a952e97.jpeg

  研究亮点

(1)实验首次展示了以简单的铁基催化剂进行的铃木二芳基偶联反应,成功实现了芳基氯底物与芳基硼酸酯的高效耦合。这一反应通过有机锂试剂的激活实现,为铁催化的碳-碳键形成反应开辟了新的可能性。 

(2)实验通过对Fe(I)中间体HSIA的动力学和热力学分析,揭示了催化过程中多个竞争反应路径的存在。计算结果表明,HSIA与硼酸酯2b的反应主要依赖于碰撞概率,符合V形Hammett依赖性。 

(3)研究表明,Fe(I)的氧化加成比Fe(0)的氧化加成要容易,这为理解铁催化的反应机制提供了新的视角。此外,生成的Fe(II)中间体LFeCl2(THF)2(HSIU)通过顺序转金属化反应形成,表明了反应中自偶联和交叉偶联的复杂性。 

  图文解读
fca7775fda2f8e1deca1bb97613252be.jpeg 图1: Suzuki联芳基偶联反应。 571668a7ce6e5934c4c48148e860e7f1.jpeg 图2: 选定的优化数据。 919aa09e1e9e0e4b0420b67bdc601047.jpeg 图3:在芳基氯化物的偶联中,选择的底物范围。 271961d9c3ce8b55ebedd5735ac2bb88.jpeg 图4: 在杂芳基氯化物的偶联中,选择的底物范围。 64b96f706b7842b408eb7e0508a117e1.jpeg 图5: 预催化剂活化的机理研究。 dd2db696ddd809ca199a17097fd36bd8.jpeg 图6: 线性自由能研究。 2bc490150cf7d59806ffd8d31cf2ebe0.jpeg 图7: 简化催化manifolds和计算的单金属Fe(I)/(III)路径。 d3ffc7b1f349cd455074e53a3f155ddc.jpeg 图8: 备选计算路径。 

结论展望 

铁作为一种丰富且廉价的第一过渡金属,展现了在铃木二芳基偶联反应中作为催化剂的巨大潜力,特别是在替代昂贵的钯催化剂方面。通过深入的机理研究,我们揭示了Fe(I)在反应过程中的关键角色,为理解金属催化反应的复杂性提供了新的视角。这不仅为催化剂的设计提供了理论基础,也为未来研究提供了重要的实验方向。其次,研究中提出的优化反应条件和不同芳基硼酸酯的选择性反应,为合成化学中的其他反应提供了借鉴。通过合理设计催化体系,可以有效提高反应的效率和选择性,这一思想同样适用于其他类型的金属催化反应。 

最后,本研究强调了可持续化学的重要性,通过发展更加环保且经济的催化体系,我们为实现绿色化学目标迈出了重要一步。这些启示将激励科研人员在探索新型催化剂和反应机制时,考虑更多的可持续性因素,从而推动催化化学及相关领域的进一步发展。 

文献信息

Rowsell, B.J.S., O’Brien, H.M., Athavan, G. et al. The iron-catalysed Suzuki coupling of aryl chlorides. Nat Catal (2024).

内容概要:本文将金属腐蚀现象比作游戏角色受到持续伤害(debuff),并采用浓度迁移和损伤方程来建模这一过程。文中首先介绍了浓度迁移的概念,将其比喻为游戏中使角色持续掉血的毒雾效果,并展示了如何利用Numpy矩阵存储浓度场以及通过卷积操作实现浓度扩散。接着引入了损伤方程,用于评估材料随时间累积的损伤程度,同时考虑到材料自身的抗性特性。作者还提供了完整的Python代码示例,演示了如何在一个二维网格环境中模拟24小时内金属表面发生的腐蚀变化,最终得到类似珊瑚状分形结构的腐蚀形态。此外,文章提到可以通过调整模型参数如腐蚀速率、材料抗性等,使得模拟更加贴近实际情况。 适合人群:对材料科学、物理化学感兴趣的科研工作者和技术爱好者,尤其是那些希望通过编程手段深入理解金属腐蚀机制的人群。 使用场景及目标:适用于希望借助数值模拟方法研究金属腐蚀行为的研究人员;可用于教学目的,帮助学生更好地掌握相关理论知识;也可作为工程项目前期评估工具,预测不同条件下金属构件可能遭受的腐蚀损害。 阅读建议:由于文中涉及较多数学公式和编程细节,建议读者具备一定的Python编程础以及对线性代数有一定了解。对于想要进一步探索该领域的学者来说,可以尝试修改现有代码中的参数设置或者扩展模型维度,从而获得更丰富的研究成果。
于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目),个人经导师指导并认可通过的高分设计项目,评审分98分,项目中的源码都是经过本地编译过可运行的,都经过严格调试,确保可以运行!主要针对计算机相关专业的正在做大作业、毕业设计的学生和需要项目实战练习的学习者,资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、使用需求,如果有需要的话可以放心下载使用。 于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)于机器学习的银行客户产品认购预测项目Python源码及全套资料(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值