Nature Catalysis:机器学习大综述,数据科学加速催化研究进程

048d0aa0378c60036012ba22276abf39.jpeg研究背景

数据科学和机器学习(ML)在催化领域早有应用,但当时预测算法仅被用于建立各种催化反应的定量构效关系(QSPR)。直到最近50年,催化界才更广泛地采用数据驱动方法(图1a)用于研究。而在最近十年间,催化研究广泛利用数据科学概念(数据科学通过一系列分析技术(如统计推断、可视化等)为理解数据提供了基础和背景)来助力催化研究进程。

近期,苏黎世联邦理工学院Javier Pérez-Ramírez等人全面回顾催化研究者如何利用数据驱动策略来解决异相、均相和酶催化的复杂挑战,强调了该领域的前沿以及催化子学科之间的知识迁移,揭示了催化实验在数据探索方面的差距,指出数据科学的四大支柱(描述性、预测性、因果性和规范性分析)能弥补这一差距。最后,作者提倡在实验中采用数据科学方法和数据标准化来促进数字催化的研究。

研究亮点

1、作者对2013-2023年期间的同质、异质和酶催化进行了系统的文献检索,并以数据驱动策略解决催化相关问题的不同类型,最后,作者将所有研究分为演绎型或归纳型。

2、作者提倡催化研究人员对数据驱动概念和策略要有基本了解,但数据驱动不会取代人类的直觉或专业知识。在可预见的未来,数据科学将集成到催化研究中,加速实验设计、数据分析和新知识的创造。

图文导读

通过总结众多的文献报道,作者确定了催化研究中数据驱动方法的两个主要目标。一种是通过绘制结构-性质-性能关系图来验证假设,实现演绎研究。第二种方法需要确定描述符,以便通过可解释的ML模型阐明性能。这些研究的重点是通过揭示性能与性质或性质与结构之间的关系来建立新的理论,称之为归纳研究(图1b)。这些系统性的文献分析以及将催化反应归类为演绎(或归纳方法)的通用模式,为研究提供了一个全新的平台,让人们能够深入了解数据驱动催化研究的全貌(图1c

### 关于电催化催化剂机器学习数据库 对于电催化催化剂领域而言,构建和利用机器学习数据库成为加速材料发现和发展的重要手段之一。这些数据库不仅收集了量的实验数据,还整合了理论计算的结果,从而为研究人员提供了丰富的资源来探索新的催化剂材料。 #### 催化剂特性与数据需求 为了实现高效的电催化过程,理想的催化剂应当具备良好的导电性、较高的活性位点密度以及优异的选择性和稳定性。然而,在实际应用中,传统的试错法效率低下且成本昂贵。因此,借助机器学习方法可以有效预测潜在候选物的表现并指导后续合成工作[^1]。 #### 数据库实例介绍 目前存在多个专注于电催化的公开可用的数据集: - **Catalysis-Hub**: 这是一个综合性的在线平台,涵盖了广泛的均相/多相催化体系的信息。它包含了详细的物质属性描述符及其对应的反应速率常数等重要参数。 - **NOMAD Repository (Novel Materials Discovery Laboratory)**: 提供了一个庞的晶体结构档案馆,并支持用户上传自己的研究成果;此外还有专门针对表面科学的应用程序接口(API),方便获取吸附能等相关物理量。 - **The ORR Catalyst Database from Harvard University**: 特别聚焦氧气还原反应(ORR)方向上的进展,记录了许多已知物种的具体表现形式(比如起始电压、半波电势),有助于理解构效关系规律。 ```python import pandas as pd from sklearn.model_selection import train_test_split # 加载示例数据集 data = pd.read_csv('path_to_electrocatalyst_dataset.csv') # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split( data.drop(columns=['target']), data['target'], test_size=0.2, random_state=42) print(f"Training set size: {len(X_train)}") print(f"Testing set size: {len(X_test)}") ``` 上述代码片段展示了如何加载一个假设存在的电催化催化剂CSV文件,并将其划分为训练集和验证集以便进一步建模分析。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值