低成本激光和视觉相结合的同步定位与建图研究

低成本激光和视觉相结合的同步定位与建图研究

作者 尹磊,欧勇盛,江国来,彭建盛

1. 引言

        激光雷达和视觉传感是目前两种主要的服务机器人定位与导航技术,但现有的低成本激光雷达定位精度较低且无法实现大范围闭环检测,而单独采用视觉手段构建的特征地图又不适用于导航应用。

2. 主要工作

        本文以配备低成本激光雷达与视觉传感器的室内机器人为研究对象,提出了一种激光和视觉相结合的定位与导航建图方法:通过融合激光点云数据与图像特征点数据,采用基于稀疏姿态调整 的优化方法,对机器人位姿进行优化。同时,采用基于视觉特征的词袋模型进行闭环检测,并进一步优化基于激光点云的栅格地图。
        真实场景下的实验结果表明,相比于单一的激光或视觉定位建图方法,基于多传感器数据融合的方法定位精度更高,并有效地解决了闭环检测问题。

3. 基于图优化的同步定位与地图构建框架

        激光 SLAM 主要通过相邻帧激光的匹配来计算相邻帧位姿变换,但由于激光数据并非完全无噪声的数据,尤其对于低成本激光雷达,打出去的激光点较为稀疏,从而导致计算得到的相邻 帧位姿变换存在误差,因此往往需要加入滤波或优化的方法来使定位更加精准。
        视觉 SLAM 是通过特征点提取与匹配来反算位姿,但若其中一帧出现问题就会导致误差累积并不断地增大。
        图优化是 SLAM 后端优化的热门方法,通过构造节点和约束边清晰地展示了一系列位姿和观测量的 关系,再通过非线性优化的手段求出最优变量从而得到精准的位姿估计。
在这里插入图片描述
        X 表示关键帧位姿,O 表示观测量,包含了特征点所对应的三维空间点坐标及二维激光数据。

3.1 视觉重投影误差

在这里插入图片描述

### ORB-SLAM激光雷达融合的使用场景 ORB-SLAM结合激光雷达(LiDAR)主要用于增强定位系统的鲁棒性准确性。这种组合特别适用于复杂多变的环境中,如自动驾驶汽车导航、无人机飞行控制以及室内机器人路径规划等应用场合。 #### 使用场景实例 - **自动驾驶车辆**:在城市道路或高速公路环境下行驶时,能够提供更精确的地能力,并提高对周围物体检测的能力。 - **无人机巡检**:用于电力线缆巡查或其他基础设施监测任务,在GPS信号弱的情况下依然能保持良好的姿态估计性能。 - **服务型机器人**:帮助家庭清洁机器人更好地理解房间布局变化;协助仓库物流AGV完成货物搬运工作而不依赖外部标记物。 ```python import open3d as o3d from orbslam import OrbSlamSystem, RgbLidarMode def process_frame(rgb_image, lidar_points): slam_system = OrbSlamSystem() # 将RGB图像LiDAR点云输入至系统中处理 rgb_lidar_mode = RgbLidarMode(slam_system) result = rgb_lidar_mode.process_frame(rgb_image, lidar_points) return result ``` ### 优点分析 1. **更高的精度** - 利用LiDAR提供的高分辨率距离测量数据补充了单目相机容易受到光照条件影响的问题,从而提高了整体位置估算的可靠性[^2]。 2. **更强的适应性** - 对于动态环境下的快速移动目标跟踪更加有效,即使是在低纹理区域也能维持较好的特征匹配效果[^1]。 3. **计算效率提升** - 实验表明,在某些特定应用场景下,相较于传统双目的ORB-SLAM方法,采用RGB-L模式可使算法运行速度加快超过40%,这有助于实现实时性的需求。 ### 缺点探讨 1. **成本增加** - 集成高质量LiDAR传感器会显著抬升整个硬件平台的成本,这对于消费级产品来说可能是一个障碍。 2. **数据同步挑战** - 不同类型的传感设备之间的时间戳差异可能导致数据不同步现象发生,进而影响最终的结果质量。 3. **复杂度上升** - 开发者需要面对更为复杂的编程接口设计技术难题解决过程,增加了项目开发周期的风险。 ### 性能对比 | 特征 | 单纯ORB-SLAM (仅视觉) | ORB-SLAM + LiDAR | | --- | --- | --- | | 定位精度 | 较差(受光线等因素干扰较大)| 更好| | 运算效率 | 中等 | 显著改善 (>40%) | | 成本效益 | 经济实惠 | 增加明显 |
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值