低成本激光和视觉相结合的同步定位与建图研究
作者 尹磊,欧勇盛,江国来,彭建盛
文章目录
1. 引言
激光雷达和视觉传感是目前两种主要的服务机器人定位与导航技术,但现有的低成本激光雷达定位精度较低且无法实现大范围闭环检测,而单独采用视觉手段构建的特征地图又不适用于导航应用。
2. 主要工作
本文以配备低成本激光雷达与视觉传感器的室内机器人为研究对象,提出了一种激光和视觉相结合的定位与导航建图方法:通过融合激光点云数据与图像特征点数据,采用基于稀疏姿态调整 的优化方法,对机器人位姿进行优化。同时,采用基于视觉特征的词袋模型进行闭环检测,并进一步优化基于激光点云的栅格地图。
真实场景下的实验结果表明,相比于单一的激光或视觉定位建图方法,基于多传感器数据融合的方法定位精度更高,并有效地解决了闭环检测问题。
3. 基于图优化的同步定位与地图构建框架
激光 SLAM 主要通过相邻帧激光的匹配来计算相邻帧位姿变换,但由于激光数据并非完全无噪声的数据,尤其对于低成本激光雷达,打出去的激光点较为稀疏,从而导致计算得到的相邻 帧位姿变换存在误差,因此往往需要加入滤波或优化的方法来使定位更加精准。
视觉 SLAM 是通过特征点提取与匹配来反算位姿,但若其中一帧出现问题就会导致误差累积并不断地增大。
图优化是 SLAM 后端优化的热门方法,通过构造节点和约束边清晰地展示了一系列位姿和观测量的 关系,再通过非线性优化的手段求出最优变量从而得到精准的位姿估计。
X 表示关键帧位姿,O 表示观测量,包含了特征点所对应的三维空间点坐标及二维激光数据。
3.1 视觉重投影误差