自动编码器中的马尔可夫链蒙特卡罗期望最大化 (MCMC-EM):使用贝叶斯推理增强学习

918 篇文章 22 订阅 ¥199.90 ¥299.90
50 篇文章 3 订阅 ¥19.90 ¥99.00
自动编码器结合MCMC-EM算法利用贝叶斯推理增强训练过程,解决传统SGD在高维参数空间的局限。MCMC-EM通过E步骤的MCMC采样和M步骤的参数更新,考虑了模型参数的不确定性,提高了自动编码器的性能和泛化能力。虽然计算成本增加,但能生成更稳健的模型。
摘要由CSDN通过智能技术生成

一、介绍

自动编码器

        自动编码器是强大的无监督学习算法,用于表示学习和降维。它们的工作原理是将输入数据编码为低维表示形式,然后将其解码回以重建原始数据。训练自动编码器通常涉及优化参数以最小化重建误差。然而,传统的优化技术(如随机梯度下降 (SGD))可能会在高维和非凸参数空间中挣扎,从而导致次优解决方案。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无水先生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值