揭秘:Wasserstein GAN与梯度惩罚(WGAN-GP)

本文深入探讨Wasserstein GAN(WGAN)中的梯度惩罚(WGAN-GP)原理,指出梯度惩罚相对于权重裁剪的优势。通过分析梯度剪切问题,解释了为何梯度惩罚能提供更稳定和高效的训练。文中还给出了WGAN-GP的代码示例,并展示了一些初步的训练结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、说明

        什么是梯度惩罚?为什么它比渐变裁剪更好?如何实施梯度惩罚?在提起GAN对抗网络中,就不能避免Wass

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无水先生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值