【射影几何11】pappus定理、和Pascal定理的证明

本文介绍了Pappus定理和Pascal定理的证明过程,涉及交比、对顶映射、割线发射线概念,以及与Ceva定理的关系,展示了射影几何在解决几何问题中的关键作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、说明

   pappus定理是射影几何的基本性质,也是理论基础;与pappus类似的是pascal定理,本篇围绕此二定理的证明,以及与之相关的其它知识进行发掘,组成关联知识,进行一举阐述。

二、交比定理

2.1 交比的最一般性质

   【引理1】这里三条并发的直线 AB、AG 和 AD 与两条线 JB 和 JE 相交,B 和 JE交点在 J 处。 过J点绘制与 AZ平行线,此平行线交AD于K,交AB于L。证明,交比 ( J G ; B D ) = K J / J L (JG;BD)=KJ/JL JG;BD=KJ/JL,有如下图 。
在这里插入图片描述
证明:
上图中。存在相似三角形KJD和AGD;JKB和GAB;
K J A G = J D G D \frac{KJ}{AG}=\frac{JD}{GD} AGKJ=GDJD
以及
J L A G = J B B G \frac{JL}{AG}=\frac{JB}{BG} AGJL=BGJB
在这里插入图片描述
因此; K J J L = J D G D J B B G \frac{KJ}{JL}= \frac{\frac{JD}{GD}} {\frac{JB}{BG}} JLKJ=BGJBGDJD
  
KJ/JL = (KJ/AG)(AG/JL) = (JD/GD)(BG/JB)。
   最后一个复合比(即JD:GD和BG:JB)是今天所称的共线点J,G,D和B的交叉比。今天用(J,G;D,B)。因此,我们已经证明,这与选择与在 A 处重合的三条直线的特定直线 JD 无关。特别地

   ( J , G ; D , B ) = ( J , Z ; H , E ) (J,G;D, B) = (J, Z;H,E) JG;DB=JZ;HE
   直线 JE 落在 A 的哪一边并不重要。具体而言,情况可能如下图所示.。

2.2 对顶映射的交比

   直线 JE 落在 A 的哪一边并不重要。具体而言,情况可能如下图所示,这是引理 X 的图表。

在这里插入图片描述
过J做ZG的平行线,与HA交于L;与AB交于K;
在这里插入图片描述

和以前一样,我们有 Δ J L D ∼ Δ G A D \Delta JLD \sim \Delta GAD ΔJLDΔGAD; Δ J K B ∼ Δ G A B \Delta JKB \sim \Delta GAB ΔJKBΔGAB;
在这里插入图片描述

因此:
K J A G = J B B G \frac{KJ}{AG}= \frac{JB}{BG} AGKJ=BGJB
J L A G = J D D G \frac{JL}{AG}= \frac{JD}{DG} AGJL=DGJD
K J J L = J D G D J B B G \frac{KJ}{JL}= \frac{\frac{JD}{GD}} {\frac{JB}{BG}} JLKJ=BGJBGDJD

  Pappus 没有明确证明这一点;但引理 X 是相反的,即如果这两个交叉比相同,并且直线 BE 和 DH 在 A 处交叉,那么点 G、A 和 Z 必须是共线的。

2.3 被割线与发射线平行

依旧是A点线束AB,AG,AD,交l1于ZHD,交l2于BG∞,因而,交比(EZ;HD)=(RB;G∞)
在这里插入图片描述
延长EG如图:
在这里插入图片描述
有(EZ;HD)=(RB;G∞);这种情况有时碰到,但很难观察出。

三、帕普斯(Pappus)定理

3.1 Pappus小传

   公元4世纪,希腊数学已经式微。公元前146年亚历山大被罗马人占领,公元后,学者们的兴趣转向天文应用,这个时期出现梅涅劳斯、托勒密等大师在三角学上有所建树,理论几何的活力逐渐凋萎。此时亚历山大的帕普斯努力总结数百年来的前人所取得的成果,避免其失传。
  约公元 290 年 – 约  350年)帕普斯是一位古代晚期的希腊数学家(时间上相当于我国秦汉时期)。以其犹太教堂或集合 而闻名,以及射影几何中的帕普斯六边形定理。除了在他自己的著作中可以找到的内容外,我们对他的生活几乎一无所知,其中许多著作都已丢失。帕普斯显然住在亚历山大,他是一名数学老师,教授高年级学生,比如赫莫多鲁斯。

   帕普斯那个时代存在的几何著作综述评论和指南,其中包括帕普斯自己的著作,写成八卷的《数学汇编》。其中应用和参考了三十多位古代数学家的著作,传播了大批原始命题及其进展、扩展和历史注释。由于许多原著已经散失,《数学汇编》便成为了解这些著作的唯一源泉,是名副其实的几何宝库。

3.2 Pappus定理和证明

   【定理】直线 l 1 l_1 l1上依次有点 A , B , C A,B,C A,B,C,直线 l 2 l_2 l2上依次有点 A ’ , B ‘ , C ’ A’,B‘,C’ A,B,C,连接AB‘,A’B交于N,连接AC‘和A’C交于M,连接B‘C和BC’交于L,试试证明:N,M,L共线。
在这里插入图片描述
证明:延长直线 A B C ABC ABC,延长直线 A ’ , B ‘ , C ’ A’,B‘,C’ A,B,C,使得它们交于点O;如下图:

在这里插入图片描述
从A看去:
See(A)= {(A‘B’C‘O),(A’NJB) }
从C看去:
See(C)= {(A‘B’C‘O),(KLC’B) }
因为交比传递后,{(A’NJB),(KLC’B) }在一个射影线束内,设射影点为X,所以:
See(X) = {(A’NJB),(KLC’B) }
所以:对应点连城直线,且交于一点X,A‘K,NL,JC’ ,(BB)当交于一点,因为BB未成直线,所以,A‘K,NL,JC’ 三线交于一点,因为 A‘K,交JC’ 于M,NL线也将交于M,因此,X就是M,NML三点共线。【证毕】

  
【引理】三条线线束分割两条线束,两条线束上存在相同交比。

四、赛瓦(Ceva)定理及其角元形式

   Ceva定理:在 Δ A B C \Delta ABC ΔABC 中,若三条直线 A D , B E , C F AD,BE,CF AD,BE,CF 共点,并记这三条直线与三角形三边分别交于 D , E , F D,E,F D,E,F ,那么 B D D C C E E A A F F B = 1 \frac{BD}{DC}\frac{CE}{EA}\frac{AF}{FB}=1 DCBDEACEFBAF=1
在这里插入图片描述
证明:如图,做垂线,和公共底边
在这里插入图片描述
有; B D D C = S Δ A O B S Δ A O C \frac{BD}{DC}=\frac{S_{\Delta {AOB}}}{S_{\Delta AOC}} DCBD=SΔAOCSΔAOB

C E E A = S Δ C O B S Δ A O B \frac{CE}{EA}=\frac{S_{\Delta {COB}}}{S_{\Delta AOB}} EACE=SΔAOBSΔCOB
A F F B = S Δ A O C S Δ B O C \frac{AF}{FB}=\frac{S_{\Delta {AOC}}}{S_{\Delta BOC}} FBAF=SΔBOCSΔAOC
将它们连乘可得到: B D D C C E E A A F F B = 1 \frac{BD}{DC}\frac{CE}{EA}\frac{AF}{FB}=1 DCBDEACEFBAF=1

【证毕】

五、Pascal定理及其证明

5.1 Pascal定理

   Pascal定理:二次曲线(包含退化的二次曲线)内接六边形(包括退化的六边形)其三对边的交点共线。(如图)

在这里插入图片描述

5.1 Pascal定理证明

   证明:利用射影几何的知识,可以证明,只要Pascal定理的二次曲线为圆的情形时,命题成立,那么Pascal定理成立。(对于其它圆锥曲线情况,可以通过对圆透视变换得到相同结果)

   欲证 PQR 三点共线,可以采取同一法,转而证明 PQ,AF,CD 三线共点,即证明:
在这里插入图片描述
根据圆周角定理,我们知道
在这里插入图片描述
在这里插入图片描述

!

蝴蝶定理射影几何中的一个重要定理,它描述了一个四边形对角线上的三个交点满足一条关系,即它们共线。下面我将用射影几何知识证明蝴蝶定理。 首先,我们需要明确射影几何中的一些概念。在射影平面中,每条直线都有一个无穷远点,所有直线的无穷远点构成一条无穷远直线。此外,每个点无穷远点构成一个点对,点对之间可以定义交点。 接下来,我们来证明蝴蝶定理。 假设在射影平面中,有一个四边形$ABCD$,它的对角线$AC$$BD$相交于点$E$。同时,我们连接$AD$$BC$,它们的交点为$F$。 根据射影几何的定义,我们可以发现四边形$ABCD$的对边是平行的。因此,我们可以利用平行线的性质,证明蝴蝶定理成立。 首先,我们考虑点$A$点$C$在对角线$BD$上的投影点,分别为$A'$$C'$。由于$ABCD$是一个四边形,所以$A'C'$是平行于$BD$的。同时,点$A$点$C$构成一个点对,它们在无穷远直线上的投影点分别为$A_{\infty}$$C_{\infty}$。根据点对之间的交点定义,$A_{\infty}$$C_{\infty}$的连线与$BD$相交于点$G$。 同理,我们可以得到点$B$点$D$在对角线$AC$上的投影点,分别为$B'$$D'$,它们在无穷远直线上的投影点分别为$B_{\infty}$$D_{\infty}$。$B_{\infty}$$D_{\infty}$的连线与$AC$相交于点$H$。 接下来,我们考虑点$A$点$D$在对角线$AC$上的投影点,分别为$A''$$D''$。由于$ABCD$是一个四边形,所以$A''D''$是平行于$AC$的。同时,点$A$点$D$构成一个点对,它们在无穷远直线上的投影点分别为$A_{\infty}$$D_{\infty}$。根据点对之间的交点定义,$A_{\infty}$$D_{\infty}$的连线与$AC$相交于点$K$。 同理,我们可以得到点$B$点$C$在对角线$BD$上的投影点,分别为$B''$$C''$,它们在无穷远直线上的投影点分别为$B_{\infty}$$C_{\infty}$。$B_{\infty}$$C_{\infty}$的连线与$BD$相交于点$L$。 现在,我们需要证明点$F$、$G$$L$共线。根据平行线的性质,我们知道$A'C'$、$A''D''$$FG$是平行的。因此,我们可以得到: $$\frac{FG}{A''D''}=\frac{AF}{A''A}$$ 同理,我们可以得到: $$\frac{FG}{B''C''}=\frac{BF}{B''B}$$ 将上面两个式子相加,可以得到: $$\frac{FG}{A''D''}+\frac{FG}{B''C''}=\frac{AF}{A''A}+\frac{BF}{B''B}$$ 将$A''D''$$B''C''$代入,可以得到: $$FG=\frac{AF}{A''A}\cdot\frac{B''C''}{BF}+1\cdot\frac{B''C''}{BF}$$ 继续化简,可以得到: $$FG=\frac{AF}{A''A}\cdot\frac{B''C''}{BF}+\frac{BF}{B''B}\cdot\frac{A''D''}{AF}$$ 由于$A''A$$B''B$是无穷远直线上的投影距离,因此它们可以表示为: $$A''A=\frac{AA_{\infty}}{AC_{\infty}}\quad B''B=\frac{BB_{\infty}}{BD_{\infty}}$$ 同理,$BF$$AF$也可以表示为: $$BF=\frac{BB_{\infty}}{BD_{\infty}}\quad AF=\frac{AA_{\infty}}{AC_{\infty}}$$ 将上面四个式子代入,可以得到: $$FG=\frac{AA_{\infty}\cdot BB_{\infty}}{AC_{\infty}\cdot BD_{\infty}}$$ 这意味着点$F$、$G$$L$在一条直线上,证毕。 因此,我们证明了蝴蝶定理射影几何中成立。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无水先生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值