深度学习和NLP中的注意力和记忆

918 篇文章 22 订阅 ¥199.90 ¥299.90

深度学习和NLP中的注意力和记忆

在这里插入图片描述

一、说明

   深度学习的最新趋势是注意力机制。在一次采访中,现任 OpenAI 研究总监的 Ilya Sutskever 提到,注意力机制是最令人兴奋的进步之一,而且它们将继续存在。这听起来很令人兴奋。但什么是注意力机制?

   神经网络中的注意力机制(非常)松散地基于人类中的视觉注意力机制。人类的视觉注意力得到了很好的研究,虽然存在不同的模型,但它们本质上都归结为能够以“高分辨率”聚焦在图像的某个区域,同时以“低分辨率”感知周围的图像,然后随着时间的推移调整焦点。

   神经网络中的注意力有着悠久的历史,特别是在图像识别方面。示例包括学习将中央凹瞥见与三阶玻尔兹曼机相结合,或使用用于图像跟踪的深度架构学习参加地点。但直到最近,注意力机制才进入通常用于NLP的递归神经网络架构(并且越来越多地用于视觉)。这就是我们将在这篇文章中重点介绍的内容。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无水先生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值