深度学习和NLP中的注意力和记忆
一、说明
深度学习的最新趋势是注意力机制。在一次采访中,现任 OpenAI 研究总监的 Ilya Sutskever 提到,注意力机制是最令人兴奋的进步之一,而且它们将继续存在。这听起来很令人兴奋。但什么是注意力机制?
神经网络中的注意力机制(非常)松散地基于人类中的视觉注意力机制。人类的视觉注意力得到了很好的研究,虽然存在不同的模型,但它们本质上都归结为能够以“高分辨率”聚焦在图像的某个区域,同时以“低分辨率”感知周围的图像,然后随着时间的推移调整焦点。
神经网络中的注意力有着悠久的历史,特别是在图像识别方面。示例包括学习将中央凹瞥见与三阶玻尔兹曼机相结合,或使用用于图像跟踪的深度架构学习参加地点。但直到最近,注意力机制才进入通常用于NLP的递归神经网络架构(并且越来越多地用于视觉)。这就是我们将在这篇文章中重点介绍的内容。