强化学习,第 4 部分:蒙特卡洛控制

918 篇文章 22 订阅 ¥199.90 ¥299.90
7 篇文章 0 订阅

目录

一、介绍

1.1 强化学习

2.1 关于此文章

三、ε贪婪策略

四、蒙特卡洛控制

4.1 基本原理

4.2 举个例子

五、On-policy & off-policy 方法

六、重要性采样

6.1 赋予动机

6.2 想法

6.3 应用

七、增量实施

7.1 增量的理论

7.2 常α MC

八、结论


一、介绍

1.1 强化学习

        R强化学习是机器学习中的一个领域,它引入了代理的概念,代理必须在复杂环境中学习最佳策略。代理从其操作中学习,这些操作会

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无水先生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值