文章目录
从kmeans各个样本所属类别 的非此即彼(要么是0要么是1,如果建立一个归属矩阵 N ∗ k N*k N∗k,每一行表示样本的归属情况,则会得到,其中一个entry是1,其他是0),到走向模糊(Fuzzy),走向不确定性(此时的归属(fuzzy membership)阵 P ( μ i ∣ x j ) i ∈ 1 , … k , j ∈ 1 , … N P(\mu_i|x_j)\;i\in 1,\ldots k,\;j\in 1,\ldots N P(μi∣xj)i∈1,…k,j∈1,…N,每个元素都会是[0-1]之间的概率值,行和要求为1)。无疑,基于模糊理论的 F C M FCM FCM是站在了 k m e a n s kmeans kmeans的肩膀上,这与其说是一种算法的改进,不如说是一种思想的进化。
算法的规格
算法的记号及参数
记号
- 隶属度函数 P ( μ i ∣ x j ) P(\mu_i|x_j) P(μi∣xj),表征样本 x j x_j xj隶属类别(cluster) μ i \mu_i μi的程度,即允许一个样本隶属于多个类别,只不过程度不同而已。
- 参数 b b b,用来控制不同类别的混合程度的自由参数。当 b b b取1时, F C M FCM FCM聚类分割算法退化为普通的 k m e a n s kmeans