模式识别经典算法——FCM图像聚类分割(最简matlab实现)

本文详细介绍了模糊C均值(FCM)图像聚类算法,包括算法规格、记号及参数、更新公式、流程、MATLAB实现以及效果演示。通过对FCM算法的探讨,展示了其与k-means的区别,尤其是模糊隶属度的概念,同时提供了避免局部极小值的方法。
摘要由CSDN通过智能技术生成

从kmeans各个样本所属类别 的非此即彼(要么是0要么是1,如果建立一个归属矩阵 N ∗ k N*k Nk,每一行表示样本的归属情况,则会得到,其中一个entry是1,其他是0),到走向模糊(Fuzzy),走向不确定性(此时的归属(fuzzy membership)阵 P ( μ i ∣ x j )    i ∈ 1 , … k ,    j ∈ 1 , … N P(\mu_i|x_j)\;i\in 1,\ldots k,\;j\in 1,\ldots N P(μixj)i1,k,j1,N,每个元素都会是[0-1]之间的概率值,行和要求为1)。无疑,基于模糊理论 F C M FCM FCM是站在了 k m e a n s kmeans kmeans的肩膀上,这与其说是一种算法的改进,不如说是一种思想的进化。

算法的规格

算法的记号及参数

记号

  • 隶属度函数 P ( μ i ∣ x j ) P(\mu_i|x_j) P(μixj),表征样本 x j x_j xj隶属类别(cluster) μ i \mu_i μi的程度,即允许一个样本隶属于多个类别,只不过程度不同而已。
  • 参数 b b b,用来控制不同类别的混合程度的自由参数。当 b b b取1时, F C M FCM FCM聚类分割算法退化为普通的 k m e a n s kmeans
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

五道口纳什

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值