Bootstrap采样方法的python实现

本文只考虑相对简单的一维的情况:

import numpy as np

def bootstrap(data, num_samples, statistics, alpha):
    n = len(data)
    idx = np.random.randint(0, n, size=(num_samples, n))
    samples = data[idx]
    stat = np.sort(statistics(samples, 1))
    return (stat[int((alpha/2)*num_samples)], stat[int((1-alpha/2)*num_samples)])
好的,我来给您讲一下如何用 Python 实现 bootstrap 采样并得到置信区间为 95% 的值。 首先,我们需要导入相关的库: ```python import numpy as np from scipy.stats import norm ``` 然后,我们定义一个函数来进行 bootstrap 采样: ```python def bootstrap_sample(data, n): """ data: 原始数据 n: 采样次数 """ bootstrap_samples = [] for i in range(n): sample = np.random.choice(data, size=len(data), replace=True) bootstrap_samples.append(sample) return bootstrap_samples ``` 这个函数接受原始数据和采样次数作为参数,返回一个包含所有 bootstrap 采样结果的列表。 接下来,我们定义一个函数来计算样本的统计量: ```python def statistic(data): """ data: 样本数据 """ return np.mean(data) ``` 这个函数接受一个样本数据作为参数,返回样本的平均值。 然后,我们使用 bootstrap 采样得到一组样本,并计算这组样本的统计量: ```python data = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) bootstrap_samples = bootstrap_sample(data, 1000) statistics = np.array([statistic(sample) for sample in bootstrap_samples]) ``` 这里我们使用了一个包含 10 个数字的数据集,并进行了 1000 次 bootstrap 采样。然后,我们将每个样本的统计量存储到一个数组中。 接下来,我们可以使用这个数组来计算置信区间。我们可以使用正态分布的累积分布函数(cdf)来计算置信区间的边界: ```python lower_bound = norm.ppf(0.025, loc=np.mean(statistics), scale=np.std(statistics)) upper_bound = norm.ppf(0.975, loc=np.mean(statistics), scale=np.std(statistics)) ``` 这里,我们使用了 `norm.ppf` 函数来计算正态分布的累积分布函数的逆函数,即给定概率、均值和标准差,计算对应的分位数。这里我们使用了 0.025 和 0.975 作为分位数,因为我们希望得到置信区间为 95%。 最后,我们可以打印出得到的置信区间: ```python print(f"95%置信区间为: ({lower_bound:.2f}, {upper_bound:.2f})") ``` 完整的代码如下: ```python import numpy as np from scipy.stats import norm def bootstrap_sample(data, n): """ data: 原始数据 n: 采样次数 """ bootstrap_samples = [] for i in range(n): sample = np.random.choice(data, size=len(data), replace=True) bootstrap_samples.append(sample) return bootstrap_samples def statistic(data): """ data: 样本数据 """ return np.mean(data) data = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) bootstrap_samples = bootstrap_sample(data, 1000) statistics = np.array([statistic(sample) for sample in bootstrap_samples]) lower_bound = norm.ppf(0.025, loc=np.mean(statistics), scale=np.std(statistics)) upper_bound = norm.ppf(0.975, loc=np.mean(statistics), scale=np.std(statistics)) print(f"95%置信区间为: ({lower_bound:.2f}, {upper_bound:.2f})") ``` 希望这个例子能够帮助您理解如何使用 Python 实现 bootstrap 采样并计算置信区间。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

五道口纳什

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值