pandas —— pd.read_csv 与df.to_csv

  • 对 DataFrame 对象迭代得到的是其各个属性列的列名,自然为 list 类型;

0. read_csv 与 df.to_csv

  • df.to_csv
    • na_rep=‘NA’:缺失值替换为NA
    • header=1/0:是否保存表头;
    • index=1/0:是否保存行的索引;

1. 从文件读取数据返回 data frame

<a href=“https://www.cnblogs.com/datablog/p/6127000.html”, target="_blank">pandas.read_csv参数详解

  • read_csvread_excel

    df = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/'
                     'breast-cancer-wisconsin/wdbc.data', header=None)
    						# df: data frame
    						# type(df): <class 'pandas.core.frame.DataFrame'>
    
  • header:表头,默认不为空(为 0,也即将第一行视为表头)。如果我们要读取的文件,直接就是数据,没有所谓的表头。就需指定 header=None,否则将以文件的第一行作为 df.columns。指定 header=None,df.columns 返回的是列索引,如一个三列的数据:

    Int64Index([0, 1, 2], dtype='int64')
    
  • index_col:认定原始 csv 文件的第几列(从0开始计数)为索引列(也即从1开始编号,表示每一行样本的编号)

    • 一般会指定 index_col=0,表示第0列为索引列
    • index_col 指定的列将不会作为 DataFrame 的一列进行返回;
  • parse_datas:指明日期列,为字符串构成的 list;

  • thousands : str, default None,千分位分割符,如“,”或者“."

2. pandas 基本数据结构:Series 与 DataFrame

from pandas import Series, DataFrame

  • Series 最重要的一个功能在于:它在算术运算中会自动对齐不同索引的数据;
X, y = df.values[:, 2:], df.values[:, 1]
				# df.values 的类型为 numpy.ndarray
# 也可以
X, y = df.loc[:, 2:].values, df.loc[:, 1].values

3. dataframe 与 numpy 下的多维数组的转换

dataframe ⇒ numpy.ndarray

  • df.ax_matrix()
  • df.values

4. 基本成员函数

  • df.dtypes:会按列给出各个列的数据类型;

  • df.columns,获取列名,可直接通过.的形式进行索引

    比如一个 df.columns 的返回值为:

    Index([u'dt', u'kind', u'value'], dtype='object')
    

    可直接索引的含义在于,使用 df.dt 或者 df.kind 或者 df.value 进行索引,获取某列的全部值( 注,pandas 的特点,以列进行索引和修改)。同时索引多个列以构成一个新的表格,

    df[['dt', 'value']]            # 这样得到的仍然是 dataframe
    

    支持[]的索引方式,但关键字必须是 list 的形式(['dt', 'value']),而不可以是 tuple

  • df.assign():指定新的列(如果列名已存在,则替换;如果不存在,在添加该列),返回一个新的 DataFrame,不对原始的 DataFrame 进行修改;

    • 当然其也可以接收一个 lambda 型的函数对象,该函数对象接收的参数则是原始的 dataframe;
    # 接收 lambda 型函数对象,
    >> df = DataFrame({'A':range(1, 6), 'B':np.random.randn(5)})
    >> df.assign(ln_A=lambda x: np.log(x.A))
    
        A         B      ln_A
    0   1  0.456539  0.000000
    1   2  1.022736  0.693147
    2   3 -0.158207  1.098612
    3   4  0.951304  1.386294
    4   5 -1.024661  1.609438
    				# 此时 df 本身并未发生任何改变;
    >> df.assign(A = range(21, 26))
        A         B
    0  21  0.456539
    1  22  1.022736
    2  23 -0.158207
    3  24  0.951304
    4  25 -1.024661
    

    <a href=“http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.assign.html”, target="_blank">pandas.DataFrame.assign

  • set_index():将某列设置为索引列;

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

五道口纳什

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值