Beta-Binomial 共轭

接上文认识 Beta 分布.

上文通过一个简单的小游戏,我们最终得到Beta分布的概率密度:

B(x|α,β)=Γ(α+β)Γ(α)Γ(β)xα1(1x)β1

Beta分布对应的一个现实中的例子为, α=k,β=nk+1 B(x|α,β) 表示 n 个独立的服从0-1均匀分布(U[0,1])的随机变量,第 k 大的随机变量的概率分布。也即:
B(X(n,k)|α=k,β=nk+1)==Γ(α+β)Γ(α)Γ(β)xα1(1x)β1n!(k1)!(nk)!xk1(1x)nk

回到游戏上来:

f(Xn=10,k=7)=10!6!3!x6(1x)3

假如我们第一次没有猜中,此时,游戏的发起者说:“让仁慈的我,给你 一些提示(先验),让请你按5次,获得5个 [0,1] 之间的随机数,然后我可以告诉你这五个数中的每一个和前面得到的10个数中第7大的数相比,谁大谁小,然后请你继续猜第7大的数是多少”。

此时问题抽象为数学表达即为:
1. X1,X2,,Xn 独立同分布于 U[0,1] ,排序后对应的顺序统计量为 X(1),X(2),,X(n) ,我们感兴趣的猜测是 p=X(k)
2. Y1,Y2,,Ym 独立同分布于 U[0,1] ,其中 m1 个比 p 小,m2个比 p
3. 问 P(p|Y1,Y2,,Ym)的分布是什么?

由于 p=X(k) X1,X2,,Xn 中是第 k 大的,利用Yi的信息,我们容易得到 p=X(k) X1,X2,,Xn,Y1,Y2,,Ym (m+n) 个独立同 U[0,1] 的随机变量中第 m1+k 大的,于是按照之前的上篇博客得到的结论,此时 p=X(k) 的概率密度函数为 Beta(p|α=m1+k,β=n+mm1k+1=n+m2+1k) ,按照贝叶斯推理(Bayesian inference)的逻辑,我们把以上变量或者记号与贝叶斯推理上下文下的说法做对应:

  1. p=X(k) 是我们要推测的参数,我们推导出 p 的分布为 f(p)=\Beta(p|α=k,β=nk+1),称为 p 先验分布
  2. 数据 Y中有 m1 个比 p 小,有m2个比 p 大,相当于对 Y m 次伯努利试验,所以 m1服从二项分布 B(m,p)
  3. 在给定了来自数据提供的 (m1,m2) 的知识后, p 的后验分布变为f(p|m1,m2)=B(p|α=m1+k,β=n+m2+1k)

等等,也即是服从二项分布的先验与服从Beta分布的似然相互作用得到了服从beta分布的后验。这是什么呀?共轭分布呗。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

五道口纳什

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值