Tricks(四十)—— 神经网络解决与(或)及异或问题

G(x)=signt=1Tαtsign(wTtx)g(x)

  • AND 与问题

    G(x)=1+g1(x)+g2(x)G(x)=1g0+1g1+1g2

    暗含了 gt(x) 的系数分别为:-1,1,1

  • OR 或问题

    G(x)=1+g1(x)+g2(x)G(x)=1g0+1g1+1g2

    暗含了 gt(x) 的系数分别为:1,1,1

inputs = [(1, x, y) for x in (-1, 1) for y in (-1, 1)]
                    # 1:表示常量输出,g_0(x)
                    # x: g_1 的输出
                    # y: g_2 的输出
# 定义内积运算
def inner_prod(x, y):
    return reduce(operator.add, map(lambda z: z[0]*z[1], zip(x, y)))


def G_AND(gs):
    return 1 if inner_prod([-1, 1, 1], gs) > 0 else -1

def G_OR(gs):
    return 1 if inner_prod([1, 1, 1], gs) > 0 else -1

if __main__ == '__name__':
    print 'or: ', [G_OR(g) for g in s]
    print 'and: ', [G_AND(g) for g in s]
  • XOR 问题

    单层感知机是无法解决异或问题的,又因为布尔运算中说:异或问题可以转换为基本布尔运算(与,或,非)的叠加,也即:

    Y = (A & !B) | (!A & B)
    def G_XOR(l):
        l1 = l[0], l[1], -l[2]
        l2 = l[0], -l[1], l[2]
        return G_OR([1, G_AND(l1), G_AND(l2)])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

五道口纳什

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值