无理数的认识

无理数也是无穷无尽的,它们比起有理数来得多得多。

1. 从 2 开始

我们从 2 开始,就可以构造无穷多个无理数:

  • 1+2 2+2 3+3 ,也都是无理数;
  • 22 32 42 ,也都是无理数;
  • 12+2 322 35742 ,仍是无理数;

  • 如果 r s 是有理数, r0 ,且 a 是无理数,那么 ra+s 必是无理数:

    证明:用反证法。若 ra+s 是有理数,令 ra+s=q ,则 qs 是有理数, a=1r(qs) 也是有理数,与条件相悖。

  • a 是无理数,k 是正整数,则 ak 是无理数。

    证明,同理使用反证法, ak=q 是有理数,则 a=qk

  • a 是无理数,1a 也是无理数

    证明,使用反证法。 1a=q a=1q ;

  • 两个无理数相加(差、积、商),可就不一定是无理数了, 3+2 32

  • a,b 是正的有理数, a b 是无理数,则 a+b 也是无理数。如果 ab ab 也是无理数。

    a±b=q a=baq22q

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

五道口纳什

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值