数学辨异 —— 泰勒展开与等比数列求和

本文详细介绍了函数1/(1-x)的泰勒级数展开过程,并通过等比数列求和公式给出了展开式的另一种理解方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

11x

1. 泰勒展开

根据:

(1+z)α=1+αz+α(α1)2!z2+α(α1)(α2)3!z3++α(α1)(αn+1)n!zn+,|z|<1

所以有:

11x===(1+(x))11+x+(1)(2)2!(x)2+(1)(2)(3)3!(x)3+1+x+x2+x3+

2. 等比数列

1+x+x2+=11x,|x|<1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

五道口纳什

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值