11−x
1. 泰勒展开
根据:
(1+z)α=1+αz+α(α−1)2!z2+α(α−1)(α−2)3!z3+⋯+α(α−1)⋯(α−n+1)n!zn+⋯,|z|<1
所以有:
11−x===(1+(−x))−11+x+(−1)(−2)2!(−x)2+(−1)(−2)(−3)3!(−x)3+⋯1+x+x2+x3+⋯
2. 等比数列
1+x+x2+…=11−x,|x|<1