曲率半径,衡量曲线的弯曲程度;
1. 定义
曲率的倒数就是曲率半径:
R=1K
平面曲线的曲率就是针对曲线上某个点的切线方向角对弧长的转动率,通过微分来定义,表明曲线偏离直线的程度。
κ=lim|Δα/Δs|
Δs 趋向于 0 的时候,定义 κ(Kappa)就是曲率。
2. 计算
曲线 CD 上点 A 和临近一点 A’(极其接近于 A) 各做一条切线,A 和 A’ 之间的弧长为 ΔS,两条切线夹角为 α,则曲线 CD 在 A 点的曲率:
- 首先弧微分公式: dsdx=1+y′2√1 , y′=tanα ⇒ α=arctany′
- 又有曲率计算公式 :
k=ΔαΔs
- 其中 Δα :从 A 到 A’ 点切线斜率的倾角变化,显然 Δα=11+y′2y′′
- Δs :A到A’ 的弧长
所以 A 点的曲率:
k=ΔαΔs=|y′′|(1+y′2)3/2