微积分 —— 曲率与曲率半径

曲率半径,衡量曲线的弯曲程度;

1. 定义

曲率的倒数就是曲率半径:

R=1K

平面曲线的曲率就是针对曲线上某个点的切线方向角对弧长的转动率,通过微分来定义,表明曲线偏离直线的程度。

κ=lim|Δα/Δs|

Δs 趋向于 0 的时候,定义 κ(Kappa)就是曲率。

2. 计算

曲线 CD 上点 A 和临近一点 A’(极其接近于 A) 各做一条切线,A 和 A’ 之间的弧长为 ΔS,两条切线夹角为 α,则曲线 CD 在 A 点的曲率:

  • 首先弧微分公式: dsdx=1+y21 y=tanα α=arctany
  • 又有曲率计算公式 : k=ΔαΔs
    • 其中 Δα :从 A 到 A’ 点切线斜率的倾角变化,显然 Δα=11+y2y′′
    • Δs :A到A’ 的弧长

所以 A 点的曲率:

k=ΔαΔs=|y′′|(1+y2)3/2

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

五道口纳什

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值